Энтальпия — что это такое простыми словами. Понятие о внутренней энергии системы, энтальпии и энтропии Энтальпия и теплота

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах:

Внутреняя энергия (U ) вещества складывается из кинетической и потенциальной энергии всех частиц вещества, кроме кинетической и потенциальной энергии вещества в целом. Внутреняя энергия зависит от природы вещества, его массы, давления, температуры. При химических реакциях разница величин внутренней знергии веществ до и после реакции выливается в тепловой эффект химической реакции. Различают тепловой эффект химической реакции, осуществляемой при постоянном объеме Q v (изохорный тепловой эффект), и тепловой эффект реакции при постоянном давлении Q p (изобарный тепловой эффект).

Тепловой эффект при постоянном давлении, взятый с противоположным знаком называют изменением энтальпии реакции (ΔH = -Q p).

Энтальпия связана с внутренней энергией H = U + pv, где p – давление, а v – объем.

Энтропия (S) – мера беспорядка в системе. Энтропия газа больше, чем энтропия жидкости и твердого тела. Энтропия это логарифм вероятности существования системы (Больцман 1896г): S = R ln W, где R – универсальная газовая постоянная, а W – вероятность существования системы (число микросостояний, которыми может быть осуществлено данное макросостояние). Энтропия измеряется в Дж/мольּK и энтропийных единицах (1э.е. =1Дж/мольּK).

Потенциал Гиббса (G) или изобарно-изотермический потенциал. Эта функция состояния системы получила название движущей силы химической реакции. Потенциал Гиббса связан с энтальпией и энтропией соотношением:

∆G = ∆H – T ∆S , где T температура в K.

6.4 Законы термохимии. Термохимические расчеты.

Закон Гесса (Герман Иванович Гесс 1840): тепловой эффект химической реакции не зависит от пути по которому идет процесс, а зависит от начального и конечного состояния системы.

Закон Лавуазье-Лапласа : тепловой эффект прямой реакции равен тепловому эффекту обратной с противоположным знаком.

Закон Гесса и следствия из него используют для расчетов изменения энтальпии, энтропии, потенциала Гиббса при химических реакциях:

∆H = ∑∆H 0 298 (прод.) - ∑∆H 0 298 (исход.)

∆S = ∑S 0 298 (прод.) - ∑S 0 298 (исход.)

∆G = ∑∆G 0 298 (прод.) - ∑∆G 0 298 (исход.)

Формулировка следствия из закона Гесса для расчета изменения энтальпии реакции: иэменения энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрии.

∆H 0 298 – стандартная энтальпия образования (количество теплоты, которое выделяется или поглощается при образовании 1 моля вещества из простых веществ при стандартных условиях). Стандартные условия: давление 101,3 кПа и температура 25 0 C.

Принцип Бертло-Томсена : все самопроизвольно протекающие химические реакции идут с уменьшением энтальпии. Этот принцип работает при низких температурах. При высоких температурах могут протекать реакции с увеличением энтальпии.

Более общим критерием возможности протекания процесса является потенциал Гиббса: ∆G < 0 - процесс возможен, ∆G > 0 - процесс невозможен, ∆G = 0, в системе равновесие (возможен прямой и обратный процесс).

Теплоемкость и ее виды. Удельной теплоемкостью с называют количество теплоты q, которое требуется для изменения температуры единицы количества вещества на один градус:

Различают массовую с, объемную с" и мольную теплоемкости, которые имеют размерность: с, Дж/кг · К; с", Дж/нм 3 · К; , Дж/ моль · К. Эти теплоемкости связаны между собой соотношениями

(1.15)

где ν о, ρ о, μ – удельный объем, плотность и молекулярная масса газа при нормальных условиях (ρ о = 1,013 · 10 5 Па, Т о = 273 К).

Теплоемкость зависит от физической природы рабочего тела, температуры, термодинамического процесса.

В технической термодинамике наиболее часто используют изобарную теплоемкость с р (при р = const) и изохорную с ν (при ν = const).

Связь между этими теплоемкостями определяется соотношением Майера для идеального газа:

с р - с ν = R, (1.16)

где R – газовая постоянная, Дж/кг · К.

Зависимостью теплоемкости от температуры часто пренебрегают, и тогда количество теплоты в изобарном и изохорном процессах находится из выражений

Q p = Мс р (Т 2 – Т 1) или q р = с р (Т 2 – Т 1);

Q ν = Мс ν (Т 2 – Т 1) или q ν = с ν (Т 2 – Т 1).

Из выражения первого закона термодинамики (1.13) и соотношения (1.14) можно получить соотношения для определения изменения внутренней энергии Δu и энтальпии Δh, справедливые для всех термодинамических процессов:

dq ν = du; du = c ν dT; Δu = u 2 – u 1 = c ν (Т 2 – Т 1);

dq р = du + рdν = dh; dh = c p dT; Δh = h 2 – h 1 = c p (Т 2 – Т 1).

Поскольку теплоемкость изменяется с температурой, в зависимости от интервала температур различают истинную с и среднюю с ср теплоемкости. Истинная теплоемкость соответствует бесконечно малому интервалу температур, а средняя - конечному интервалу изменения температуры. Значения теплоемкостей основных газов приводятся в справочниках, учебных пособиях в зависимости от температуры .

Энтальпия. Вводится расчетным путем: полное – H = U + pV или удельное значение h = u + pν, энтальпия представляет некоторую энергию, равную сумме внутренней энергии и произведения давления на объем. Единицей измерения энтальпии Н является джоуль (Дж) или h, Дж/кг. Энтальпия является функцией состояния. Так как в изобарном процессе dH = dQ, то можно сказать, что энтальпия – это количество теплоты, подведенное в изобарном процессе.

Энтропия. Единицей измерения энтропии S является Дж/К и удельной s – Дж/ кг·К. Эта функция состояния вводится расчетным путем и имеет полный дифференциал Количество теплоты в термодинамическом процессе

Если представить термодинамический процесс в T-s диаграмме, то площадь под кривой процесса характеризует количество подведенной или отведенной теплоты.

Энтропию нельзя измерить, но по физическому смыслу она является мерой температурной ценности теплоты, ее способности превращения в работу. Можно сказать также, что энтропия характеризует потерю работы вследствие необратимости реальных процессов (при этом энтропия возрастает).

Обычно при расчете термодинамических процессов определяют не абсолютные значения u, h, s, а изменение в процессе Δu, Δh, Δs.

При протекании химических реакций происходит перестройка энергетических уровней. Разрушаются одни связи в молекулах и образуются другие. Все это требует определенных энергетических затрат. Превращение одних видов энергии и работы в другие, а также направление и пределы самопроизвольного протекания химических процессов изучает химическая термодинамика. Объектом изучения химической термодинамики является система.

Система - это совокупность взаимодействующих веществ, мысленно или фактически обособленная от окружающей среды (пробирка, автоклав).

Системы бывают: гомогенные - состоящие из одной фазы (однородный раствор поваренной соли) и гетерогенные - состоящие из нескольких фаз (вода со льдом).

Фаза - часть системы, однородная по составу и свойствам и отделенная от других частей системы поверхностью раздела.

В химической термодинамике рассматриваются системы: изолированные - не обменивающиеся с окружающей средой веществом и энергией; закрытые - обменивающиеся энергией с окружающей средой и не обменивающиеся веществом. Существуют открытые системы, которые обмениваются веществом и энергией с окружающей средой, это живые организмы. Но они не рассматриваются в химической термодинамике.

Состояние системы можно охарактеризовать термодинамическими параметрами, к которым относятся: температура, давление, концентрация, плотность, объем, масса.

Если состояние системы характеризуется постоянными и неизменными во времени значениями термодинамических параметров во всех точках системы, то она находится в состоянии равновесия. При изменении одного из параметров состояния система переходит в состояние нового равновесия. Химическая термодинамика рассматривает переходы из одного состояния в другое, при этом могут изменяться или оставаться постоянными некоторые параметры:

изобарические - при постоянном давлении;

изохорические - при постоянном объеме;

изотермические - при постоянной температуре;

изобарно - изотермические - при постоянном давлении и температуре и т.д.

Термодинамические свойства системы можно выразить с помощью нескольких функций состояния системы, называемых характеристическими функциями: внутренней энергии U, энтальпии H, энтропии S, энергии Гиббса G, энергии Гельмгольца F. Характеристические функции обладают одной особенностью: они не зависят от способа (пути) достижения данного состояния системы. Их значение определяется параметрами системы (давлением, температурой и др.) и зависит от количества или массы вещества, поэтому принято относить их к одному молю вещества.

Энтальпия и энтропия

Теплота реакции ДН и изменение свободной энергии ДG не всегда имеют сравнимые значения. В действительности известны реакции, протекающие спонтанно (ДG < 0) несмотря на то, что являются эндотермическими (ДЗ > 0). Это происходит потому, что на прохождение реакции оказывает влияние изменение степени упорядоченности системы. Мерой изменения упорядоченности системы служит изменение энтропии ДS.

Энтропия системы тем выше, чем больше степень неупорядоченности (беспорядка) системы. Таким образом, если процесс идет в направлении увеличения неупорядоченности системы (а повседневный опыт показывает, что это наиболее вероятный процесс), ДS - величина положительная. Для увеличения степени порядка в системе (ДS > 0) необходимо затратить энергию. Оба этих положения вытекают из фундаментального закона природы - второго закона термодинамики. Количественно зависимость между изменениями энтальпии, энтропии и свободной энергии описывается уравнением Гиббса-Гельмгольца:

ДG = ДH - T * ДS

Поясним зависимость этих трех величин на двух примерах.

Взрыв гремучей смеси (1) - это взаимодействие двух газов - кислорода и водорода - с образованием воды. Как и многие окислительно-восстановительные реакции это сильно экзотермический процесс (т.е. ДН<<0). В то же время в результате реакции возрастает степень упорядоченности системы. Газ с его хаотически мигрирующими молекулами перешел в более упорядоченное состояние - жидкую фазу, при этом число молекул в системе уменьшилось на 1/3. В результате увеличения степени упорядоченности (ДS<0) член уравнения - T · ДS - величина положительная, однако это с избытком компенсируется ростом энтальпии: в итоге происходит высоко экзергоническая реакция (ДG <<0).

При растворении в воде поваренной соли (2) ДН - величина положительная, температура в сосуде с раствором, т.е. в объеме раствора, снижается. Тем не менее процесс идет спонтанно, поскольку степень упорядоченности системы уменьшается. В исходном состоянии ионы Na+ и Сl - занимали фиксированные положения в кристаллической решетке. В растворе они перемещаются независимо друг от друга в произвольных направлениях. Снижение упорядоченности (ДS>0) означает, что член уравнения - T · ДS имеет знак минус. Это компенсирует ДН и в целом ДG - величина отрицательная. Подобные процессы принято называть энтропийными.

Энергия Гиббса. Энергия Гельмгольца. Направленность химических реакций

Если процесс протекает самопроизвольно, то внутренняя энергия (энтальпия) должны уменьшаться, а энтропия увеличиваться. Для сравнения этих величин их надо выразить в одних единицах, а для этого ДS умножить на T. В этом случае имеем ДН - энтальпийный фактор и ТДS - энтропийный фактор.

В ходе реакции частицы стремятся к объединению, что ведет к уменьшению энтальпии (ДН < 0), с другой стороны - должна возрастать энтропия, т.е. увеличиваться число частиц в системе (ТДS > 0). «Движущая сила» реакции определяется разностью между этими величинами и обозначается ДG.

ДGp,T = ДH - TДS

и называется изменением энергии Гиббса (изобарно-изотермический потенциал).

Энергия Гиббса - это часть энергетического эффекта реакции, которую можно превратить в работу, поэтому ее называют свободной энергией. Это тоже термодинамическая функция состояния и, следовательно, для реакции

bB + dD =lL + mM

энергию Гиббса химической реакции можно рассчитать как сумму энергий Гиббса образования продуктов реакции за вычетом энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов по формуле:

ДG = lДfGL + mДfGM - dДfGD - bДfGB

где ДfG - энергия Гиббса образования веществ.

Энергия Гиббса образования веществ это изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых при 298 К.

Энергия Гиббса образования простых веществ ДfG принимается равной нулю. Если образующееся вещество и исходные простые вещества находятся в стандартных состояниях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества ДfG0. Ее значения приводятся в справочниках.

Полученное значение ДG является критерием самопроизвольного течения реакции в прямом направлении, если ДG < 0. Химическая реакция не может протекать самопроизвольно в прямом направлении, если энергия Гиббса системы возрастает, т.е. ДG > 0. Если ДG = 0, то реакция может протекать как в прямом, так и в обратном направлениях, т.е. реакция обратима.

Направление химических реакций зависит от их характера. Так, условие ДG < 0 соблюдается при любой температуре для экзотермических реакций (ДН < 0), у которых в ходе реакции возрастает число молей газообразных веществ, и, следовательно, энтропия (ДS > 0). У таких реакций обе движущие силы (ДН) и (ТДS) направлены в сторону протекания прямой реакции и ДG < 0 при любых температурах. Такие реакции являются необратимыми.

Наоборот, эндотермическая реакция (ДН > 0), в результате которой уменьшается число молей газообразных веществ (ДS < 0) не могут протекать самопроизвольно в прямом направлении при любой температуре, т.к. всегда ДG > 0.

Если в результате экзотермической реакции (ДН < 0) уменьшается число молей газообразных веществ и, соответственно, энтропия (ДS < 0), то при невысокой температуре ДН > TДS и реакция возможна в прямом направлении (ДG < 0). При высоких температурах ДH < TДS и прямая реакция самопроизвольно протекать не может (ДG > 0), а обратная реакция возможна.

Для определения температуры равновесия можно воспользоваться условием:

где Тр - температура, при которой устанавливается равновесие, т.е. возможность протекания прямой и обратной реакций.

Если в результате эндотермической реакции (ДН > 0) увеличивается число молей газообразных веществ и энтропия системы (ДS > 0), то при невысоких температурах, когда ДН > ТДS, самопроизвольно прямая реакция идти не может (ДG > 0), а при высоких температурах, когда ДН < TДS, прямая реакция может протекать самопроизвольно (ДG < 0).

Связь между ДG и ДG0 выражается уравнением изотермы Вант-Гоффа, которая для реакции

bB + dD = lL + mM

В изохорно-изотермических условиях свободная энергия называется энергией Гельмгольца или изохорно-изотермическим потенциалом и равна Она характеризует направление и предел самопроизвольного течения химической реакции при изохорно-изотермических условиях, которое возможно при ДF < 0.

Термодинамические потенциалы, функции параметров состояния макроскопической системы (т-ры Т, давления р, объема V, энтропии S, чисел молей компонентов ni, хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому термодинамическому потенциалу соответствует набор параметров состояния, наз. естественными переменными.

Важнейшие термодинамические потенциалы: внутренняя энергия U (естественные переменные S, V, ni); энтальпия Н= U - (- pV) (естественные переменные S, p, ni); энергия Гельмгольца (свободная энергия Гельмгольца, ф-ция Гельмгольца) F = = U - TS (естественные переменные V, Т, ni); энергия Гиббса (своб. энергия Гиббса, ф-ция Гиббса) G=U - - TS - (- pV) (естественные переменные p, Т, ni); большой термодинамич. потенциал (естественные переменные V, Т, mi) Термодинамические потенциалы могут быть представлены общей формулой

где Lk - интенсивные параметры, не зависящие от массы системы (таковы Т, p, mi), Xk-экстенсивные параметры, пропорциональные массе системы (V, S, ni). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W. Термодинамические потенциалы являются ф-циями состояния термодинамической системы, т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы термодинамических потенциалов имеют вид:

Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все термодинамические потенциалы имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов термодинамических потенциалов при постоянстве соответствующих естественных переменных:

термодинамический энтальпия реакция энтропия

Термодинамич. устойчивость системы выражается неравенствами:

Термодинамические потенциалы, взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость, теплоемкость и т.п.) м. б. выражено соотношением, включающим только данный термодинамический потенциал, его естественные переменные и производные термодинамических потенциалов разных порядков по естественным переменным. В частности, с помощью термодинамических потенциалов можно получить уравнения состояния системы.

Важными св-вами обладают производные термодинамических потенциалов. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

[в общем виде: (9Yl/9Хi) = Li]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

[в общем виде: (9Yl/9Li) = Xi]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:

Т.к. дифференциалы термодинамических потенциалов являются полными, перекрестные вторые частные производные термодинамических потенциалов равны, напр. для G (T, p, ni):

Соотношения этого типа называются соотношениями Максвелла.

Термодинамические потенциалы можно представить и как ф-ции переменных, отличных от естественных, напр. G (T, V, ni), однако в этом случае св-ва термодинамических потенциалов как характеристич. ф-ции будут потеряны. Помимо термодинамических потенциалов характеристич. ф-циями являются энтропия S (естественные переменные U, V, ni), ф-ция Массье Ф1 = (естественные переменные 1/Т, V, ni), ф-ция Планка(естественные переменные 1/Т, p/Т, ni). Термодинамические потенциалы связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

В общем виде

Термодинамические потенциалы являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей ni пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность термодинамических потенциалов приводит к соотношениям типа:

В статистической термодинамике пользуются аналогами энергии Гельмгольца и большого термодинамич. потенциала, к-рым отвечают соответственно канонич. и макроканонич. распределения Гиббса. Это позволяет рассчитывать термодинамические потенциалы для модельных систем (идеальный газ, идеальный р-р) по молекулярным постоянным в-ва, характеризующим равновесную ядерную конфигурацию (межъядерные расстояния, валентные и торсионные углы, частоты колебаний и т.п.), к-рые м. б. получены из спектроскопич. и др. данных. Возможен расчет термодинамических потенциалов через сумму по состояниям Z (интеграл по состояниям). Подобный подход позволяет установить связь термодинамических потенциалов с молекулярными постоянными вещества. Вычисление суммы (интеграла) Z для реальных систем - весьма сложная задача, обычно статистические расчеты применяют для определения термодинамических потенциалов идеальных газов.

Внутренняя энергия, энергия тела, зависящая только от его внутреннего состояния. Понятие Внутренняя энергия объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, которой тело может обладать, если оно находится в поле каких-нибудь сил (например, в поле сил тяготения).

Энтальпия (Н) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термoдинамическое свoйство вещества, котoрое указывает уровень энергии, сохранённoй в его молекулярнoй структуре.

Это значит, чтo, хотя веществo мoжет oбладать энергией на oсновании темпeратуры и давления, не всю её можно преобразовать в тeплоту. Часть внутрeнней энергии всeгда остаётся в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Дж/кг для удельной энергии.

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии - имеет вполне определенное значение для каждого состояния: ΔH = H2 − H1

Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра равно нулю, а отсюда ΔU = 0 и ΔH = 0.

Энтропи́я - понятие, впервые возникшее в термодинамике как мера необратимого рассеяния энергии.

Энтропия (S (Дж/К)) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением

Где K- коэффициент пропорциональности.

Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла который имеет какие – либо неправильности несколько больше.

С повышением температуры энтропия всегда возрастает, так же возрастает при превращение вещества из кристаллического состояния в жидкое, и в особенности при переходе из жидкого состояния в газообразное.

Энтропия зависит только от состояния системы. Но связь изменения энтропии с теплотой зависит от способа проведения процесса – от его скорости.

Если процесс проходит обратимо и при постоянной температуре:

Изменение S = Q(обр)/T. Q(обр)- кол-во теплоты, T- абсолютная температура.

Loading...Loading...