К фундаментальным наукам не относится. Фундаментальные исследования, фундаментальная наука

Человек, являясь частью природы и имея некоторые черты сходства с животными, особенно с приматами, однако же обладает совершенно уникальным свойством. Его головной мозг может выполнять действия, называемые в психологии когнитивными, - познавательные. Способность человека к абстрактному мышлению, связанная с развитием коры головного мозга, привела его к целенаправленному постижению закономерностей, лежащих в основе эволюции природы и общества. В результате возник такой феномен познания, как фундаментальная наука.

В этой статье мы рассмотрим пути развития ее различных отраслей, также выясним, чем теоретические исследования отличаются от практических форм когнитивных процессов.

Общее знание - что это такое?

Часть познавательной деятельности, исследующая базовые принципы строения и механизмов мироздания, а также затрагивающая причинно-следственные связи, возникающие вследствие взаимодействий объектов материального мира, - это и есть фундаментальная наука.

Она призвана изучать теоретические аспекты как естественно-математических, так и гуманитарных дисциплин. Специальная структура Организации Объединенных Наций, занимающаяся вопросами науки, образования и культуры, - ЮНЕСКО - относит к фундаментальным изысканиям именно те, которые приводят к открытию новых законов мироздания, а также к установлению связей между явлениями природы и предметами физической материи.

Почему нужно поддерживать теоретические исследования

Одним из отличительных признаков, присущих высокоразвитым государствам, является высокий уровень развития общего знания и щедрое финансирование научных школ, занимающихся глобальными проектами. Как правило, они не дают быстрой материальной выгоды и часто являются трудоемкими и дорогостоящими. Однако именно фундаментальная наука является той основой, на которой базируются дальнейшие практические опыты и внедрение полученных результатов в промышленное производство, сельское хозяйство, медицину и другие отрасли человеческой деятельности.

Наука фундаментальная и прикладная - движущая сила прогресса

Итак, глобальное познание сущности бытия во всех формах его проявления является продуктом аналитико-синтетических функций человеческого мозга. Эмпирические предположения древних философов о дискретности материи привели к появлению гипотезы о существовании мельчайших частиц - атомов, озвученной, например, в поэме Лукреция Кара «О природе вещей». Гениальные исследования М. В. Ломоносова и Д. Дальтона привели к созданию выдающегося атомно-молекулярного учения.

Постулаты, которые предоставила фундаментальная наука, послужили основанием для последующих прикладных исследований, проведенных учеными-практиками.

От теории к практике

Путь от кабинета ученого-теоретика к научно-исследовательской лаборатории может занимать многие годы, а может быть стремительным и насыщенным новыми открытиями. Например, российские ученые Д. Д. Иваненко и Е. М. Гапон в 1932 году в лабораторных условиях открыли состав атомных ядер, а вскоре профессор А. П. Жданов доказал существование внутри ядра чрезвычайно больших сил, связывающих протоны и нейтроны в единое целое. Они были названы ядерными, а прикладная дисциплина - ядерная физика - нашла им применение в циклофазотронах (один из первых создан в 1960 году в г. Дубне), в реакторах АЭС (в 1964 году в г. Обнинске), в военной промышленности. Все выше риведенные нами примеры наглядно показывают, как взаимосвязана между собой фундаментальная и прикладная наука.

Роль теоретических исследований в понимании эволюции материального мира

Неслучайно начало становления общечеловеческого знания связывают с развитием, прежде всего, системы естественных дисциплин. Наше общество изначально пыталось не только познать законы материальной действительности, но и получить над ними тотальную власть. Достаточно вспомнить известный афоризм И. В. Мичурина: «Мы не можем ждать милостей от природы, взять их у нее - наша задача». Для иллюстрации давайте рассмотрим, как развивалась физическая фундаментальная наука. Примеры, подтверждающие человеческий гений, можно найти в открытиях, приведших к формулировке

Где используют знание закона гравитации

Все началось с опытов Галилео Галилея, доказавшего, что вес тела не влияет на скорость, с которой он падает на землю. Затем в Исаак Ньютон сформулировал постулат вселенского значения - закон всемирного тяготения.

Теоретические знания, которые получила физика - фундаментальная человечество с успехом применяет в современных методах геологоразведки, в составлении прогнозов океанских приливов. используют в проведении расчетов движения искусственных спутников Земли и межгалактических станций.

Биология - фундаментальная наука

Пожалуй, ни в какой другой отрасли человеческого знания нет такого изобилия фактов, служащих ярким примером уникального развития когнитивных процессов у биологического вида Человек разумный. Постулаты естествознания, сформулированные Чарльзом Дарвином, Грегором Менделем, Томасом Морганом, И. П. Павловым, И. И. Мечниковым и другими учеными, коренным образом повлияли на развитие современной эволюционной теории, медицины, селекции, генетики и сельского хозяйства. Далее мы приведем примеры, подтверждающие тот факт, что в области биологии фундаментальная и прикладная наука тесно взаимосвязаны между собой.

От скромных опытов на грядках - к генной инженерии

В середине XIX столетия в небольшом городке на юге Чехии Г. Мендель проводил эксперименты по скрещиванию между собой нескольких сортов гороха, которые различались окраской, а также формой семян. У полученных гибридных растений Мендель собирал плоды и подсчитывал семена с различными признаками. Благодаря своей чрезвычайной скрупулезности и педантичности, экспериментатор провел несколько тысяч опытов, результаты которых представил в отчете.

Коллеги-ученые, вежливо выслушав, оставили его без внимания. А напрасно. Прошло почти сто лет, и сразу несколько ученых - Де Фриз, Чермак и Корренс - объявили об открытии законов наследственности и о создании новой биологической дисциплины - генетики. Но лавры первенства достались не им.

Фактор времени в осмыслении теоретического знания

Как оказалось впоследствии, они продублировали опыты Г. Менделя, взяв лишь другие объекты для своих исследований. К середине XX века новые открытия в области генетики посыпались как из Де Фриз создает свою мутационную теорию, Т. Морган - хромосомную теорию наследственности, Уотсон и Крик расшифровывают структуру ДНК.

Однако три главных постулата, сформулированные Г. Менделем, до сих пор остаются краеугольным камнем, на котором стоит биология. Фундаментальная наука в очередной раз доказала, что ее результаты никогда не пропадают даром. Они просто ждут нужное время, когда человечество будет готовым понять и оценить новые знания по заслугам.

Роль дисциплин гуманитарного цикла в развитии глобальных познаний о мироустройстве

История - одна из самых первых отраслей человеческого знания, зародившаяся еще в античные времена. Ее основателем считают Геродота, а первым теоретическим трудом - трактат «История», написанный им же. До настоящего времени эта наука продолжает изучать события прошлого, а также выявляет возможные причинно-следственные связи между ними в масштабе как общечеловеческой эволюции, так и в развитии отдельных государств.

Выдающиеся исследования О. Конта, М. Вебера, Г. Спенсера послужили весомым доказательством в пользу утверждения о том, что история - фундаментальная наука, призванная устанавливать законы развития человеческого общества на различных этапах его развития.

Ее прикладные отрасли - экономическая история, археология, история государства и права - углубляют наши представления о принципах организации и эволюции социума в контексте развития цивилизаций.

Юриспруденция и ее место в системе теоретических наук

Как функционирует государство, какие закономерности можно выявить в процессе его развития, каковы принципы взаимодействия государства и права - на эти вопросы отвечает фундаментальная Она содержит в себе наиболее общие для всех прикладных отраслей правоведения категории и понятия. Их затем успешно применяют в своей работе криминалистика, судебная медицина, юридическая психология.

Юриспруденция обеспечивает соблюдение правовых норм и законов, что является важнейшим условием сохранения и процветания государства.

Роль информатики в процессах глобализации

Чтобы представить себе, насколько востребована эта наука в современном мире, приведем следующие цифры: более 60% всех рабочих мест в мире оснащены компьютерной техникой, а в наукоемких производствах показатель возрастает до 95 %. Стирание информационных барьеров между государствами и их населением, создание глобальных мировых торговых и экономических монополий, образование интернациональных коммуникативных сетей невозможно без IT-технологий.

Информатика как фундаментальная наука создает комплекс принципов и методов, обеспечивающих компьютеризацию механизмов управления любыми объектами и процессами, происходящими в социуме. Ее наиболее перспективные прикладные отрасли - это разработка сетей, экономическая информатика, а также компьютерное управление производства.

Экономика и ее место в мировом научном потенциале

Экономическая фундаментальная наука является базой для современного межгосударственного промышленного производства. Она выявляет причинно-следственные связи между всеми субъектами хозяйственной деятельности общества, а также развивает методологию единого экономического пространства в масштабах современной человеческой цивилизации.

Зародившись в трудах А. Смита и Д. Рикардо, впитав идеи о монетаризме, современная экономическая наука широко использует концепции неоклассики и мейнстрима. На их основе сформировались прикладные отрасли: региональная и постиндустриальная экономика. Они изучают как принципы рационального размещения производства, так и последствия научно-технической революции.

В данной статье мы выяснили, какую роль играет в развитии общества фундаментальная наука. Примеры, приведенные выше, подтверждают ее первостепенное значение в познании законов и принципов функционирования материального мира.

Классификация наук по предмету исследования

По предмету исследования все науки делятся на естественные, гуманитарные и технические.

Естественные науки изучают явления, процессы и объекты материального мира. Этот мир иногда называется внешним миром. К данным наукам относятся физика, химия, геология, биология и другие подобные науки. Естественные науки изучают и человека как материальное, биологическое существо. Одним из авторов представления естественных наук как единой системы знаний был немецкий биолог Эрнст Геккель (1834-1919). В своей книге «Мировые загадки» (1899) он указал на группу проблем (загадок), которые являются предметом изучения, по существу, всех естественных наук как единой системы естественно-научных знаний, естествознания. « Геккеля» можно сформулировать следующим образом: как возникла Вселенная? какие виды физического взаимодействия действуют в мире и имеют ли они единую физическую природу? из чего в конечном итоге состоит все в мире? чем отличается живое от неживого и каково место человека в бесконечно изменяющейся Вселенной и ряд других вопросов фундаментального характера. На основании вышеизложенной концепции Э. Геккеля о роли естественных наук в познании мира можно дать следующее определение естествознания.

Естествознание - это система естественно-научных знаний, создаваемая естественными науками в процессе изучения фундаментальных законов развития природы и Вселенной в целом.

Естествознание является важнейшим разделом современной науки. Единство, целостность естествознанию придает лежащий в основе всех естественных наук естественно-научный метод.


Гуманитарные науки - это науки, изучающие законы развития общества и человека как социального, духовного существа. К ним относятся история, право, экономика и другие аналогичные науки. В отличие, например, от биологии, где человек рассматривается как биологический вид, в гуманитарных науках речь идет о человеке как творческом, духовном существе. Технические науки - это знания, которые необходимы человеку для создания так называемой «второй природы», мира зданий, сооружений, коммуникаций, искусственных источников энергии и т. д. К техническим наукам относятся космонавтика, электроника, энергетика и ряд других аналогичных наук. В технических науках в большей степени проявляется взаимосвязь естествознания и гуманитарных наук. Создаваемые на основе знаний технических наук системы учитывают знания из области гуманитарных и естественных наук. Во всех науках, о которых говорилось выше, наблюдается специализация и интеграция. Специализация характеризует глубокое изучение отдельных сторон, свойств исследуемого объекта, явления, процесса. Например, эколог может посвятить всю свою жизнь исследованию причин «цветения» водоема . Интеграция характеризует процесс объединения специализированных знаний из различных научных дисциплин. Сегодня наблюдается общий процесс интеграции естествознания, гуманитарных и технических наук в решении ряда актуальных проблем, среди которых особое значение имеют глобальные проблемы развития мирового сообщества. Наряду с интеграцией научных знаний развивается процесс образования научных дисциплин на стыке отдельных наук. Например, в ХХ в. возникли такие науки, как геохимия (геологическая и химическая эволюция Земли), биохимия (химические взаимодействия в живых организмах) и другие. Процессы интеграции и специализации красноречиво подчеркивают единство науки, взаимосвязь ее разделов. Разделение всех наук по предмету изучения на естественные, гуманитарные и технические сталкивается с определенной трудностью: к каким наукам относятся математика, логика, психология, философия, кибернетика, общая теория систем и некоторые другие? Вопрос этот не является тривиальным. Особенно это касается математики. Математика, как отмечал один из основателей квантовой механики английский физик П. Дирак (1902-1984), - это орудие, специально приспособленное для того, чтобы иметь дело с отвлеченными понятиями любого вида, и в этой области нет предела ее могуществу. Знаменитому немецкому философу И. Канту (1724-1804) принадлежит такое утверждение: в науке столько науки, сколько в ней математики. Особенность современной науки проявляется в широком применении в ней логических и математических методов . В настоящее время ведутся дискуссии о так называемых междисциплинарных и общеметодологических науках. Первые могут представлять свои знания о законах исследуемых объектов во многих других науках, но как дополнительную информацию. Вторые разрабатывают общие методы научного познавания, их называют общеметодологическими науками. Вопрос о междисциплинарных и общеметодологических науках является дискуссионным, открытым, философским.

Теоретические и эмпирические науки

По методам, используемым в науках, принято делить науки на теоретические и эмпирические.

Слово «теория» заимствовано из древнегреческого языка и означает «мыслимое рассмотрение вещей». Теоретические науки создают разнообразные модели реально существующих явлений, процессов и объектов исследований. В них широко используются абстрактные понятия, математические вычисления и идеальные объекты. Это позволяет выявить существенные связи, законы и закономерности исследуемых явлений, процессов и объектов. Например, для того чтобы понять закономерности теплового излучения, классическая термодинамика использовала понятие абсолютно черного тела, которое полностью поглощает падающее на него световое излучение. В развитии теоретических наук большую роль играет принцип выдвижения постулатов.

Например, А. Эйнштейн принял в теории относительности постулат о независимости скорости света от движения источника его излучения. Этот постулат не объясняет, почему скорость света является постоянной, а представляет собой исходное положение (постулат) данной теории. Эмпирические науки. Слово «эмпирический» произведено от имени-фамилии древнеримского медика, философа Секста Эмпирика (III в. н. э.). Он утверждал, что только данные опыта должны лежать в основе развития научных знаний. Отсюда эмпирический означает опытный. В настоящее время это понятие включает в себя как понятие эксперимента, так и традиционные методы наблюдения: описание и систематизация фактов, полученных без использования методов проведения эксперимента. Слово «эксперимент» заимствовано из латинского языка и означает в буквальном переводе проба и опыт. Строго говоря, эксперимент «задает вопросы» природе, т. е. создаются специальные условия, которые позволяют выявить действие объекта в этих условиях. Между теоретическими и эмпирическими науками существует тесная взаимосвязь: теоретические науки используют данные эмпирических наук, эмпирические науки проверяют следствия, вытекающие из теоретических наук. Нет ничего более эффективного, чем хорошая теория в научных исследованиях, и развитие теории невозможно без оригинального, творчески продуманного эксперимента. В настоящее время термин «эмпирические и теоретические» науки заменен более адекватными терминами «теоретические исследования» и «экспериментальные исследования». Введением этих терминов подчеркивается тесная связь между теорией и практикой в современной науке.

Фундаментальные и прикладные науки

С учетом результата вклада отдельных наук в развитие научного познания все науки подразделяются на фундаментальные и прикладные науки. Первые сильно влияют на наш образ мыслей, вторые - на наш образ жизни.

Фундаментальные науки исследуют самые глубокие элементы, структуры, законы мироздания. В XIX в. было принято называть подобные науки «чисто научными исследованиями», подчеркивая их направленность исключительно на познание мира, изменение нашего образа мыслей. Речь шла о таких науках, как физика, химия и другие естественные науки. Некоторые ученые XIX в. утверждали, что «физика - это соль, а все остальное - ноль». Сегодня такое убеждение является заблуждением: нельзя утверждать, что естественные науки являются фундаментальными, а гуманитарные и технические - опосредованными, зависящими от уровня развития первых. Поэтому термин «фундаментальные науки» целесообразно заменить термином «фундаментальные научные исследования», которые развиваются во всех науках.

Прикладные науки, или прикладные научные исследования, ставят своей целью использование знаний из области фундаментальных исследований для решения конкретных задач практической жизни людей, т. е. они влияют на наш образ жизни. Например, прикладная математика разрабатывает математические методы для решения задач в проектировании, конструировании конкретных технических объектов. Следует подчеркнуть, что в современной классификации наук учитывается также целевая функция той или иной науки. С учетом этого основания говорят о поисковых научных исследованиях для решения определенной проблемы и задачи. Поисковые научные исследования осуществляют связь между фундаментальными и прикладными исследованиями при решении определенной задачи и проблемы. Понятие фундаментальности включает следующие признаки: глубина исследования, масштаб применения результатов исследования в других науках и функции этих результатов в развитии научного познания в целом.

Одной из первых классификаций естественных наук является классификация, разработанная французским ученым (1775-1836). Немецкий химик Ф. Кекуле (1829-1896) также разработал классификацию естественных наук, которая обсуждалась в XIX в. В его классификации основной, базовой наукой выступала механика, т. е. наука о самом простейшем из видов движения - механическом.

ВЫВОДЫ

1. Э. Геккель рассматривал все естественные науки как фундаментальную основу научного знания, подчеркивая, что без естествознания развитие всех других наук будет ограниченным и несостоятельным. В этом подходе подчеркивается важная роль естествознания. Однако на развитие естествознания оказывают существенное влияние гуманитарные и технические науки.

2. Наука - это целостная система естественно-научных, гуманитарных, технических, междисциплинарных и общеметодологических знаний.

3. Уровень фундаментальности науки определяется глубиной и масштабностью ее знаний, которые необходимы для развития всей системы научных знаний в целом.

4. В правоведении теория государства и права относится к фундаментальным наукам, ее понятия и принципы являются основными для правоведения в целом.

5. Естественно-научный метод является основой единства всех научных знаний.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ И СЕМИНАРОВ

1. Предмет исследования естественных наук.

2. Что изучают гуманитарные науки?

3. Что исследуют технические науки?

4. Фундаментальные и прикладные науки.

5. Связь теоретических и эмпирических наук в развитии научного познания.

ОСНОВНЫЕ ИСТОРИЧЕСКИЕ ЭТАПЫ РАЗВИТИЯ ЕСТЕСТВОЗНАНИЯ

Основные понятия: классическая, неклассическая и постнеклассическая наука, естественно-научная картина мира, развитие науки до эпохи Нового времени, развитие науки в России

Классическая, неклассическая и постнеклассическая наука

Исследователи, изучающие науку в целом, выделяют три формы исторического развития науки: классическую, неклассическую и постнеклассическую науку.

Классической наукой называют науку до начала ХХ в., имея в виду научные идеалы, задачи науки и понимание научного метода, характерные для науки до начала прошлого века. Это прежде всего вера многих ученых того времени в рациональное устройство окружающего мира и в возможность точного причинно-следственного описания событий в материальном мире. Классическая наука исследовала две господствующие в природе физические силы: силу тяготения и электромагнитную силу. Механическая, физическая и электромагнитная картины мира, а также концепция энергии, основанная на классической термодинамике, являются типичными обобщениями классической науки. Неклассическая наука - это наука первой половины прошлого века. Теория относительности и квантовая механика являются базовыми теориями неклассической науки. В этот период разрабатывается вероятностная трактовка физических законов: абсолютно точно нельзя предсказать траекторию движения частиц в квантовых системах микромира. Постнеклассическая наука (фр. post - после) - наука конца ХХ в. и начала XXI в. В этот период уделяется большое внимание исследованию сложных, развивающихся систем живой и неживой природы на основе нелинейных моделей. Классическая наука имела дело с объектами, поведение которых можно предсказать в любое желаемое время. В неклассической науке появляются новые объекты (объекты микромира), прогноз поведения которых дается на основе вероятностных методов. Классическая наука также использовала статистические, вероятностные методы, однако она объясняла невозможность предсказания, например, движения частицы в броуновском движении большим количеством взаимодействующих частиц, поведение каждой из которых подчиняется законам классической механики.

В неклассической науке вероятностный характер прогноза объясняется вероятностной природой самих объектов исследования (корпускулярно-волновой природой объектов микромира).

Постнеклассическая наука имеет дело с объектами, прогноз поведения которых с некоторого момента становится невозможным, т. е. в этот момент происходит действие случайного фактора. Такие объекты обнаружены физикой, химией, астрономией и биологией.

Нобелевский лауреат по химии И. Пригожин (1917-2003) справедливо отмечал, что западная наука развивалась не только как интеллектуальная игра или ответ на запросы практики, но и как страстный поиск истины. Этот трудный поиск находил свое выражение в попытках ученых разных веков создать естественнонаучную картину мира.

Понятие естественно-научной картины мира

В основе современной научной картины мира лежит положение о реальности предмета изучения науки. «Для ученого, - писал (1863-1945), - очевидно, поскольку он работает и мыслит как ученый, никакого сомнения в реальности предмета научного исследования нет и быть не может». Научная картина мира - это своеобразный фотопортрет того, что есть на самом деле в объективном мире. Иначе говоря, научная картина мира - это образ мира, который создается на основе естественно-научных знаний о его строении и законах. Важнейшим принципом создания естественно-научной картины мира является принцип объяснения законов природы из исследования самой природы, не прибегая к ненаблюдаемым причинам и фактам.

Ниже дается краткое изложение научных идей и учений, развитие которых привело к созданию естественно-научного метода и современного естествознания.

Античная наука

Строго говоря, развитие научного метода связано не только с культурой и цивилизацией Древней Греции. В древних цивилизациях Вавилона, Египта, Китая и Индии происходило развитие математики, астрономии, медицины и философии. В 301 г. до н. э. войска Александра Македонского вошли в Вавилон, в его завоевательных походах всегда участвовали представители греческой учености (ученые, медики и т. д.). К этому времени вавилонские жрецы располагали достаточно развитыми знаниями в области астрономии, математики и медицины. Из этих знаний греки заимствовали деление суток на 24 часа (по 2 часа на каждое созвездие зодиака), деление окружности на 360 градусов, описание созвездий и ряд других знаний. Кратко представим достижения античной науки с точки зрения развития естествознания.

Астрономия. В III в. до н. э. Эратосфен из Киренаи вычислил размеры Земли, и достаточно точно. Он же создал первую карту известной части Земли в градусной сетке. В III в. до н. э. Аристарх из Самоса высказал гипотезу о вращении Земли и других известных ему планет вокруг Солнца. Он обосновывал эту гипотезу наблюдениями и вычислениями. Архимед, автор необыкновенно глубоких работ по математике, инженер, построил во II в. до н. э. планетарий , приводившийся в движение водой. В I в. до н. э. астроном Посидоний вычислил расстояние от Земли до Солнца, полученное им расстояние составляет примерно 5/8 действительного. Астроном Гиппарх (190-125 гг. до н. э.) создал математическую систему кругов для объяснения видимого движения планет. Он же создал первый каталог звезд, включил в него 870 ярких звезд и описал появление «новой звезды» в системе ранее наблюдаемых звезд и тем самым открыл важный вопрос для обсуждения в астрономии: происходят ли какие-либо изменения в надлунном мире или нет. Лишь в 1572 г. датский астроном Тихо Браге (1546-1601) вновь обратился к этой проблеме.

Система кругов, созданная Гиппархом, была развита К. Птолемеем (100-170 гг. н. э.), автором геоцентрической системы мира. Птолемей добавил к каталогу Гиппарха описание еще 170 звезд. Система мироздания К. Птолемея развивала идеи аристотельской космологии и геометрии Евклида (III в. до н. э.). В ней центром мира являлась Земля, вокруг которой вращались известные тогда планеты и Солнце по сложной системе круговых орбит. Сопоставление месторасположения звезд по каталогам Гиппарха и Птолемея - Тихо Браге позволило астрономам в XVIII в. опровергнуть постулат космологии Аристотеля: «Постоянство неба - закон природы». Имеются свидетельства также о значительных достижениях античной цивилизации в медицине . В частности, Гиппократ (410-370 гг. до н. э.) отличался широтой охвата медицинских вопросов. Наибольших успехов его школа достигла в области хирургии и в лечении открытых ран.

Большую роль в развитии естествознания сыграли учения о строении вещества и космологические идеи античных мыслителей.

Анаксагор (500-428 гг. до н. э.) утверждал, что все тела в мире состоят из бесконечно делимых малых и неисчислимо многих элементов (семян вещей, гомеомерии). Из этих семян путем беспорядочного их движения образовался хаос. Наряду с семенами вещей, как утверждал Анаксагор, существует «мировой ум», как тончайшее и легчайшее вещество, несоединимое с «семенами мира». Мировой разум создает из хаоса порядок в мире: однородные элементы соединяет, а неоднородные отделяет друг от друга. Солнце, как утверждал Анаксагор, это раскаленная металлическая глыба или камень во много раз больше города Пелопоннеса.

Левкипп (V в. до н. э.) и его ученик Демокрит (V в. до н. э.), а также их последователи уже в более поздний период - Эпикур (370-270 гг. до н. э.) и Тит Лукреций Кара (I в. н. э.) - создали учение об атомах. Все в мире состоит из атомов и пустоты. Атомы вечны, они неделимы и неуничтожимы. Атомов бесконечное число, форм атомов также бесконечно, одни из них круглые, другие крючковатые и т. д., до бесконечности. Все тела (твердые, жидкие, газообразные), а также то, что называют душой, состоят из атомов. Многообразие свойств и качеств в мире вещей явлений определяется многообразием атомов, их числом и видом их соединений. Душа человека - это тончайшие атомы. Атомы нельзя создать или уничтожить. Атомы находятся в вечном движении. Причины, вызывающие движение атомов, заложены в самой природе атомов: им свойственны тяжесть, «трясучесть» или, говоря на современном языке, пульсирование, дрожание. Атомы - это единственная и настоящая реальность, действительность. Пустота, в которой происходит вечное движение атомов - это лишь фон, лишенный структуры, бесконечное пространство. Пустота - необходимое и достаточное условие для вечного движения атомов, из взаимодействия которых образуется все как на Земле, так и во всей Вселенной. Все в мире причинно обусловлено в силу необходимости, порядка, изначально существующего в нем. «Вихревое» движение атомов является причиной всего существующего не только на планете Земля, но и во Вселенной в целом. Миров существует бесконечное множество. Поскольку атомы вечны, их никто не создавал, и не существует, следовательно, начала мира. Таким образом, Вселенная - это движение из атомов в атомы. В мире нет целей (например, такой цели, как возникновение человека). В познании мира разумно спрашивать, почему нечто произошло, по какой причине, и совершенно неразумно спрашивать, для какой цели это произошло. Время - это разворачивание событий из атомов в атомы. «Люди, - утверждал Демокрит, - измыслили себе образ случая, чтобы пользоваться им как предлогом, прикрывающим их собственную нерассудительность».

Платон (IV в. до н. э.) - античный философ, учитель Аристотеля. Среди естественно-научных идей философии Платона особое место занимает концепция математики и роли математики в познании природы, мира, Вселенной. Согласно Платону науки, основанные на наблюдении или чувственном познании, например физика, не могут привести к адекватному, истинному знанию мира. Из математики Платон считал основной арифметику, поскольку идея числа не нуждается в своем обосновании в других идеях. Эта идея о том, что мир написан на языке математики, глубоко связана с учением Платона об идеях или сущностях вещей окружающего мира. В этом учении содержится глубокая мысль о существовании связей и отношений, имеющих всеобщий характер в мире. У Платона получалось, что астрономия ближе к математике, чем физика, поскольку астрономия наблюдает и выражает в количественных математических формулах гармонию мира, созданного демиургом, или богом, наилучшего и самого совершенного, целостного, напоминающего огромный организм. Учение о сущности вещей и концепция математики философии Платона оказали огромное влияние на многих мыслителей последующих поколений, например на творчество И. Кеплера (1570-1630): «Создавая нас по своему подобию, - писал он, - Бог хотел, чтобы мы были способны воспринимать и разделить с ним его собственные мысли... Наше знание (чисел и величин) того же рода, что и божие, но, по крайней мере, постольку, поскольку мы можем понять хотя бы что-нибудь в течение этой бренной жизни». И. Кеплер пытался объединить земную механику с небесной, предполагая наличие в мире динамических и математических законов, управляющих этим созданным Богом совершенным миром. В этом смысле И. Кеплер был последователем Платона. Он пытался объединить математику (геометрию) с астрономией (наблюдениями Т. Браге и наблюдениями его современника Г. Галилея). Из математических вычислений и данных наблюдений астрономов у Кеплера сложилась идея о том, что мир - это не организм, как у Платона, а хорошо отлаженный механизм, небесная машина. Он открыл три загадочных закона, согласно которым планеты движутся не по окружностям, а по эллипсам вокруг Солнца. Законы Кеплера:

1. Все планеты обращаются по эллиптическим орбитам, в фокусе которых находится Солнце.

2. Прямая, соединяющая Солнце и какую-либо планету, за равные промежутки времени описывает одинаковую площадь.

3. Кубы средних расстояний планет от Солнца относятся как квадраты их периодов обращения: R 13/R 23 - T 12/T 22,

где R 1, R 2 - расстояние планет до Солнца, Т 1, Т 2 - период обращения планет вокруг Солнца. Кеплера были установлены на основе наблюдений и противоречили аристотелевской астрономии, которая была общепризнанной в период Средневековья и имела своих сторонников в XVII в. Свои законы И. Кеплер считал иллюзорными, поскольку он был убежден в том, что Бог определил движение планет по круговым орбитам в виде математической окружности.

Аристотель (IV в. до н. э.) - философ, основатель логики и ряда наук, таких как биология и теория управления. Устройство мира, или космология, Аристотеля выглядит следующим образом: мир, Вселенная, имеет форму шара с конечным радиусом. Поверхностью шара является сфера, поэтому Вселенная состоит из вложенных друг в друга сфер. Центром мира является Земля. Мир делится на подлунный и надлунный. Подлунный мир - это Земля и сфера, на которой прикреплена Луна. Весь мир состоит из пяти элементов: вода, земля, воздух, огонь и эфир (лучезарный). Из эфира состоит все, что находится в надлунном мире: звезды, светила, пространство между сферами и сами надлунные сферы. Эфир не может быть воспринят органами чувств. В познании всего, что находится в подлунном мире, не состоящем из эфира, наши чувства, наблюдения, корректированные умом, нас не обманывают и дают адекватную о подлунном мире информацию.

Аристотель считал, что мир создан с определенной целью. Поэтому у него во Вселенной все имеет свое целевое назначение или место: огонь, воздух стремятся вверх, земля, вода - к центру мира, к Земле. В мире нет пустоты, т. е. все занято эфиром. Кроме пяти элементов, о которых идет речь у Аристотеля, есть еще нечто «неопределенное», которое он называет «первой материей», но в его космологии «первая материя» существенной роли не играет. В его космологии мир надлунный является вечным и неизменяемым. Законы надлунного мира отличаются от законов мира подлунного. Сферы надлунного мира равномерно двигаются по окружностям вокруг Земли, делая полный оборот за одни сутки. На последней сфере находится «перводвигатель». Являясь неподвижным, он придает движение всему миру. В мире подлунном действуют собственные законы. Здесь господствуют изменения, возникновения, распад и т. п. Солнце и звезды состоят из эфира. Он не оказывает никаких воздействий на небесные тела в надлунном мире. Наблюдения, говорящие о том, что в небесном своде что-то мерцает, движется и т. п., по космологии Аристотеля, являются следствием влияния атмосферы Земли на наши органы чувств.

В понимании природы движения Аристотель различал четыре вида движения: а) увеличение (и уменьшение); б) превращение или качественное изменение; в) возникновение и уничтожение; г) движение как перемещение в пространстве. Предметы относительно движения, по Аристотелю, могут быть: а) неподвижны; б) самодвижущиеся; в) движущиеся не спонтанно, а посредством действия других тел. Анализируя виды движения, Аристотель доказывает, что в основе их лежит вид движения, который он назвал движением в пространстве. Движение в пространстве может быть круговым, прямолинейным и смешанным (круговое + прямолинейное). Поскольку в мире Аристотеля нет пустоты, то движение должно иметь непрерывный характер, т. е. от одной точки пространства к другой. Отсюда следует, что прямолинейное движение является прерывным, так, дойдя до границы мира, луч света, распространяясь по прямой, должен прервать свое движение, т. е. изменить свое направление. Аристотель считал круговое движение самым совершенным и вечным, равномерным, именно оно свойственно движению небесных сфер.

Мир, по философии Аристотеля, является космосом, где человеку отведено главное место. В вопросах отношения живого и неживого Аристотель был сторонником, можно сказать, органической эволюции. Теория или гипотеза происхождения жизни Аристотеля предполагает «спонтанное зарождение из частиц вещества», имеющих в себе некое «активное начало», энтелехию (греч. entelecheia - завершение), которое при определенных условиях может создавать организм. Учение об органической эволюции развивалось также философом Эмпедоклом (V в. до н. э.).

Значительными были достижения древних греков в области математики. Например, математик Эвклид (III в. до н. э.) создал геометрию в качестве первой математической теории пространства. Лишь в начале XIX в. появилась новая неевклидова геометрия, методы которой использовались при создании теории относительности, основы неклассической науки.

Учения древнегреческих мыслителей о материи, веществе, атомах содержали глубокую естественно-научную мысль об универсальном характере законов природы: атомы одни и те же в различных частях мира, следовательно, в мире атомы подчиняются одним и тем же законам.

Вопросы к семинару

Различные классификации естественных наук (Ампер, Кекуле)

Античная астрономия

Античная медицина

Строение мира.

Математика

ПЛАН

Введение

Фундаментальные науки в системе высшего образования

Заключение

Список литературы


ВВЕДЕНИЕ

Интеграция Болонского процесса в систему образования Украины принесла множество изменений. Первое и самое главное - внедрение независимого тестирования для школьников, а также упрощение системы уровней выпускников вузов. Но это только те изменения, которые видны для всех. На деле Болонский процесс изменяет очень многое в украинском образовании.

Нынешняя эпоха развития человечества - эпоха современной техногенной цивилизации - имеет ряд специфических черт и особенностей. Прежде всего, это касается науки, так как она определяет успехи и достижения в познании мира и во всех иных сферах человеческой деятельности.

Наука сегодня рассматривается как элемент культуры, взаимосвязанный и взаимодействующий со всеми другими элементами культуры.

Фундаментальные науки являются важной составляющей системы высшего образования. Рассмотрим что же такое фундаментальная наука, ее значение в университетском образовании, каковы принципы фундаментальности знаний.


ФУНДАМЕНТАЛЬНЫЕ НАУКИ В СИСТЕМЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Что такое фундаментальная наука.

Фундаментальная наука – базис системы научного знания и базиса высшего образования, следовательно, она – базис качества общественного интеллекта.

Университетское образование в первую очередь базируется на фундаментальной науке и ее в первую очередь и развивает.

А. Гумбольдт еще в первой половине ХIX века провозгласил принцип единства университетского образования и научных исследований, единства университета и фундаментальной науки. За прошедшие более чем 150 лет этот принцип не потерял своего значения, более того в свете императива экологический выживаемости человечества в XXI веке, перехода к управляемой социоприродной эволюции на основе общественного интеллекта и образовательного общества, он усилился. Закон опережающего развития качества человека и качества общественного интеллекта требует, чтобы «живое знание», транслируемое в процессе обучения в университете (и вообще – в любых вузах) опережало «овеществленное знание» в технологиях, в управлении, в социотехнических и экономических системах, что возможно только при соединении образовательного процесса с фундаментальными исследованиями.

Фундаментальная наука есть та часть системы научного знания, которая обращена к познанию законов, по которым функционирует и развивается мир как «вовне» человека («надмир», «макрокосм»), так и мир «внутри» человека («подмир», «микрокосм»), к раскрытию единой и частной научных картин мира, к решению крупных проблем, возникающих перед человеком.

Принципы фундаментальности знаний.

К принципам фундаментальности знаний относятся:

Наличие рефлексивного ядра – знания о знаниях или метазнания. Метазнаниевый блок наук – математика, кибернетика, системология, тектология (наука об организации), лингвистика, классиология или метаклассификация, циклология (наука о цикличности развития), квалитология и квалиметрия (наука о качестве антропогенных систем и наука об оценке и измерении этого качества), гомеостатика, синергетика, системогенетика и др. в той части, в какой они выполняют метазнаниевые, научнокоординирующие функции, относятся к фундаментальным наукам;

Наличие процессов фундаментализации знаний - системологизации, таксономизации, квалитативизации, методологизации, математизации, кибернетизации и проблематизации. По данному критерию в каждом из макроблоков наук – естествознании, человековедении, обществоведении, технознании – имеется свой слой фундаментального научного знания;

Проблемность. На проблемную организацию фундаментальной науки как на новый принцип ее организации, противостоящий принципу предметоцентризма, указал В. И. Вернадский еще в 30-х годах ХХ века. Универсальность, как признак фундаментальности, соединяется с проблемностью. В контексте университетского образования этот критерий определяет новую парадигму пробемно-ориентированного профессионализма формирует новый облик фундаментальности науки и образования;

Философизация научного знания.

Философия фундаментальной науки

«Философия фундаментальной науки» XXI века, как основа рефлексии над ведущими направлениями ее развития, начинается с выделения критических «узлов» в изменениях оснований естествознания, которые по принципу резонансного влияния оказывают влияния на внутреннюю методологическую рефлексию остальных «макроблоков» единой науки.

«Вернадскианскую революцию» в системе научного мировоззрения, определившую вектор интеграции фундаментальной науки на основе ее своеобразной ноосфероведческой «стержнизации» (если воспользоваться методологическим понятиям «стержнизации» Б. М. Кедрова). В марте 2003 года в С.-Петербурге проведена юбилейная конференция «Вернадскианская революция в системе научного мировоззрения – поиск ноосферной модели будущего человечества в XXI веке» и опубликована одноименная монография. В ней показано, что учение о ноосфере В. И. Вернадского и развиваемая в настоящее время научно-мировоззренческая, теоретическая система ноосферизма отражают собой революцию в эволюции науки в ХХ веке, которую вслед за Николасом Полуниным и Жаком Грюневальдом, можно назвать «вернадскиаснкой революцией». Речь идет о ноосферизации оснований фундаментальной науки и университетского образования, которая станет в нашей оценке одним из главных приоритетов синтеза фундаментальной науки и фундаментализации высшего образования.

Наконец, стоит подчеркнуть, фундаментализация науки через ноосферизм, которая в нашей оценке будет ведущей в XXI веке (к этому процессу следует отнести концепцию Земли – Геи как суперорганизма Лавлока, успешно развиваемую в мире его научной школой с начала 70-х годов), есть одновременно развитие фундаментальной науки в целом.

Ставя вопрос о приоритетах развития фундаментальной науки следует подчеркнуть особо сдвиг в развитии обществоведения и человековедения, которые уже наметились и будут набирать силу.

Задачи фундаментальных наук

За рубежом университеты называют кузницей фундаментальной науки. Прикладные исследования хотя и проводятся, но не они не представляют лицо академической науки. Чаще всего ими занимаются исследовательские центры в крупных компаниях, а в нашей стране - НИИ (научно-исследовательские институты).

Несмотря на то, что разница между двумя типами исследований очевидная, многие преподаватели, а вслед за ними студенты путаются, смешивая понятия либо не умея их четко разграничить. Отсюда практический изъян: фундаментальные исследования в университетских лабораториях нередко проводятся по схеме прикладного и выдаются за фундаментальное. Вред, наносимый такой подменой как науке, так и образованию, огромен. И об этом не следует умалчивать. Вот почему возникла потребность в рамках Стратегического развития этого факультета более детально поговорить о фундаментальных и прикладных исследованиях как таковых.

Фундаментальные и прикладные исследования

Фундаментальная наука - это наука, имеющая своей целью создание теоретических концепций и моделей, практическая применимость которых неочевидна 1. Задачей фундаментальных наук является познание законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы и структуры изучаются в «чистом виде», как таковые, безотносительно к их возможному использованию. У фундаментальной и прикладной науки различные методы и предмет исследования, различные подходы и угол зрения на социальную действительность. У каждой из них свои критерии качества, свои приемы и методология, свое понимание функций ученого, своя собственная история и даже своя идеология. Иными словами, свой мир и своя субкультура.

Естествознание - пример фундаментальной науки. Оно направлено на познание природы, такой, как она есть сама по себе независимо от того, какое приложение получат его открытия: освоение космоса или загрязнение окружающей среды. И никакой другой цели естествознание не преследует. Это наука для науки, т.е. познания окружающего мира, открытия фундаментальных законов бытия и приращения фундаментальных знаний.

Непосредственная цель прикладных наук - применение результатов фундаментальных наук для решения не только познавательных, но и практических проблем. Поэтому здесь критерием успеха служит не только достижение истины, но и мера удовлетворения социального заказа. Как правило, фундаментальные науки опережают в своём развитии прикладные, создавая для них теоретический задел. В современной науке на долю прикладных наук приходится до 80-90% всех исследований и ассигнований. Действительно, фундаментальная наука составляет только малую часть общего объема научных исследований.

Прикладная наука - это наука, направленная на получение конкретного научного результата, который актуально или потенциально может использоваться для удовлетворения частных или общественных потребностей. 2.Важную роль выполняют разработки, которые переводят результаты прикладных наук в форму технологических процессов, конструкций, социоинженерных проектов. К примеру, пермская система стабилизации трудового коллектива (СТК) поначалу разрабатывалась в рамках фундаментальной социологии, опираясь на ее принципы, теории, модели. После этого ее конкретизировали, придали ей не только законченную форму и практическую форму, но определили сроки реализации, необходимые для этого финансовые и кадровые ресурсы. На прикладной стадии систему СТК неоднократно обкатывали не ряде предприятий СССР. Лишь после этого она получила вид практической программы и была готова к широкому распространению (стадия разработки и внедрения).

К фундаментальным исследованиям относятся экспериментальные и теоретические исследования, направленные на получение новых знаний без какой-либо конкретной цели, связанной с использованием этих знаний. Их результат - гипотезы, теории, методы и т.п. Фундаментальные исследования могут завершаться рекомендациями по постановке прикладных исследований для выявления возможностей практического использования полученных результатов, научными публикациями и т.д.

Национальным научным фондом США дано такое определение понятия фундаментального исследования:

Фундаментальные исследования - это часть научно-исследовательской деятельности, направленная на пополнение общего объема теоретических знаний... Они не имеют заранее определенных коммерческих целей, хотя и могут осуществляться в областях, интересующих или способных заинтересовать в будущем бизнесменов-практиков.

Фундаментальная и прикладная науки - два совершенно разных типа деятельности. Вначале, а это происходило в античные времена, расстояние между ними было незначительным и почти все, что открывалось в сфере фундаментальной науки сразу же или в короткие сроки находило применение на практике. Архимед открыл закон рычага, который немедленно был использован в военном и инженерном деле. А древние египтяне открывали геометрические аксиомы, в буквальном смысле не отрываясь от земли, поскольку геометрическая наука возникла из нужд земледелия. Постепенно расстояние увеличивалось и сегодня достигло максимума. На практике воплощает менее 1% открытий, сделанных в чистой науке. В 1980-е годы американцы провели оценочное исследование (цель таких исследование - оценка практической значимости научных разработок, их эффективности). Более 8 лет дюжина исследовательских групп анализировали 700 технологических инноваций в системе вооружений. Результаты ошеломили публику: у 91% изобретений в качестве источника значится предшествующая прикладная технология, и только у 9% - достижения в сфере науки. Причем из них лишь у 0,3% источник лежит в области чистых (фундаментальных) исследований.

Фундаментальная наука занимается исключительно приращением нового знания, прикладная - только приложением апробированного знания. Добывание нового знания - это авангард науки, апробация нового знания- ее арьергард, т.е. обоснование и проверка однажды добытых знаний, превращение текущих исследований в «твердое ядро» науки. Практическое приложение - это деятельность по применению знаний «твердого ядра» к реальным жизненным проблемам. Как правило, «твердое ядро» науки отображается в учебниках, учебных пособиях, методических разработках и всевозможных руководствах.

Один из главных признаков фундаментального знания - его интеллектуальность. Как правило, оно обладает статусом научного открытия и является приоритетным в своей области. Иначе говоря, считается образцовым, эталонным.

Фундаментальное знание в науке - сравнительно небольшая часть проверенных на опыте научных теорий и методологических принципов либо аналитических приемов, которыми пользуются ученые в качестве руководящей программы. Остальное знание - результат текущих эмпирических и прикладных исследований, совокупность объяснительных моделей, принятых пока что в качестве гипотетических схем, интуитивных концепций и так называемых «пробных» теорий.

Фундамент классической физики раньше составляла механика Ньютона, и вся масса практических экспериментов в то время базировалась именно на ней. Законы Ньютона служили как бы «твердым ядром» физики, а текущие исследования лишь подтверждали и уточняли существующее знание. Позже была создана теория квантовой механики, которая стала фундаментом современной физики. Она по-новому объясняла физические процессы, давала иную картину мира, оперировала другими аналитическими принципами и методологическими инструментами.

Фундаментальную науку за то, что она развивается главным образом в университетах и академиях наук, называют еще академической. Университетский профессор может подрабатывать в коммерческих проектах, даже трудиться на полставке в частной консультативной или исследовательской фирме. Но он всегда остается университетским профессором, немного свысока поглядывающим на тех, кто постоянно занимается маркетинговыми или рекламными обследованиями, не поднимаясь до открытия новых знаний, кто никогда не публиковался в серьезных академических журналах.

Таким образом, у социологии, занимающейся приращением новых знаний и глубинным анализом явлений, существует два названия: термин «фундаментальная социология» указывает на характер получаемого знания, а термин «академическая социология» - на место в социальной структуре общества.

Фундаментальные идеи ведут к революционным изменениям. После их обнародования научное сообщество уже не может думать и изучать по-старому. Мировоззренческие установки, теоретическая ориентация, стратегия научного поиска, а иногда и сами методы эмпирической работы трансформируются самым кардинальным образом. Перед взором ученых как бы открывается новая перспектива. На фундаментальные исследования тратятся огромные суммы денег, ибо только они, в случае успеха, пусть и достаточно редкого, приводят к серьезному сдвигу в науке.

Фундаментальная наука имеет своей целью познание объективной действительности такой, как она есть сама по себе. Прикладные науки имеют совершенно другую цель - изменение природных объектов в нужном для человека направлении. Именно прикладные исследования непосредственно связаны с инженерией и технологией. Фундаментальные исследования обладают относительной независимостью от прикладных разработок.

Прикладная наука отличается от фундаментальной (а в нее необходимо включать теоретическое и эмпирическое знание) практической направленностью. Фундаментальная наука занимается исключительно приращением нового знания, прикладная - исключительно приложением апробированного знания. Добывание нового знания - это авангард или периферия науки, апробация нового знания - это его обоснование и проверка, превращение текущих исследований в «твердое ядро» науки, приложение - это деятельность по применению знаний «твердого ядра» к практическим проблемам. Как правило, «твердое ядро» науки отображается в учебниках, учебных пособиях, методических разработках и всевозможных руководствах.

Перевод фундаментальных результатов в прикладные разработки могут осуществлять одни и те же ученые, разные специалисты либо для этого создаются особые институты конструкторские бюро, внедренческие фирмы и компании. К прикладным исследованиям относят такие разработки, на "выходе" у которых стоит конкретный заказчик, выплачивающий немалые деньги за готовый результат. Поэтому конечный продукт прикладных разработок представлен в виде изделий, патентов, программ и т. д. Считают, что ученые, чьи прикладные разработки не покупают, должны пересмотреть свои подходы и сделать продукцию конкурентоспособной. К представителям фундаментальной науки подобных требований никогда не выдвигают.

Цель фундаментальной общественной науки

Целью фундаментальной общественной науки является вернуть человека и общество к подлинной социальной онтологии, а это требует критики социал-дарвинистского, либерального, рыночно-капиталистического Анти-Разума, уже приведшего человека к первой фазе Глобальной Экологической Катастрофы и воюющего против памяти культур, этнической памяти, исторического опыта локальных цивилизаций, географического детерминизма, в целом против органической целостности человечества и природы, «антропо-социальной целостности», если воспользоваться этой категорией В. Н. Сагатовского. Модерн и пост-модерн, тяготеющие к форме, и выгоняющие содержание, – в науке и культуре, – олицетворяют собой войну Капитала-Фетиша и Капиталократии против «памяти» культуры, против традиций, против этнического разнообразия. Именно этот «вектор» модернизации – вестернизации пытается «обезнулить память» человека и общества, с тем, чтобы он быстрее превратился в монетарного неокочевника.

Обществоведение в XXI веке должно встать на защиту человека и его будущего в XXI веке. Принцип Неклассической науки – принцип Синтеза Истины, Добра и Красоты – ставит новый критерий истины и рационального: истинно и рационально то, что способствует экологическому выживанию человечества в XXI веке, а значит, способствует становлению социоприродной, ноосферной гармонии. Если долженствование входит в сущее «рефлексивного мира», то оно тогда выполняет свою функцию управления будущим, когда способствует прогрессивной эволюции этого «рефлексивного мира», в нашем случае – человечества.


ЗАКЛЮЧЕНИЕ

В ходе подготовки реферата, была изучена тема: «Фундаментальные науки в системе высшего образования». Рассматривая вопросы о значении фундаментальных дисциплин, особое внимание было обращено на то, что реформирование образования способно освободить общество от консерватизма и тем самым помочь ему преодолеть разрыв между старым и новым.

Одной из самых важных проблем высшего образования есть оптимальное соотношение фундаментальных наук и прикладных дисциплин, поворот образования к целостной картине жизни и прежде всего – к миру культуры, миру человека, формирования его системного мышления. Обеспечить будущее существования человечества в мире могут теоретические, фундаментальные знания. Путем решения этой задачи является, во-первых, необходимость усиления природно-научной подготовки. Во-вторых, осознание роли и значения дисциплин гуманитарного цикла – признание человека за самую важную социальную ценность, уважение к личности, создание особенностей для раскрытия способностей.


СПИСОК ЛИТЕРАТУРЫ

1. Субетто А. И. Проблемы фундаментализации и источников содержания высшего образования. – Кострома. – М.: КГПУ им. Н. А. Некрасова, Исследоват. центр, 1996 – 336с.

2. Казначеев В. П., Спирин Е. А. Космопланетарный феномен человека. Проблемы комплексного изучения. – Новосибирск: «Наука», СО, 1991 – 304с.

3. Основы прикладной социологии. Учебник для вузов. М. 1995.

4. Субетто А. И. Технологии сбора и обработки информации в процессе мониторинга качества образования. – СПб. – М.: Исследоват. центр, 2000. – 49с.

5. Субетто А. И. Творчество, жизнь, здоровье и гармония. Этюды креативной онтологии. – М.: Изд-во «Логос», 1992. – 204с.

Формирует способы познания, которые коррелируют между естественнонаучными и гуманитарными науками, что позволяет существовать способам деятельности в соответствии с обстоятельствами различных сфер жизни и производства.

Задачи и функции

В задачи фундаментальной науки входит установление тождества во взаимосвязи гносеологии, аксиологии и бытия с целью создания системы научного знания, в которой сохраняются старые знания, накапливаются новые и организуется использование (передача) в соответствии с потребностями развития самих наук и потребностями практики. Создаёт условия для накопления интеллектуального капитала, при которых наука проявляет себя как производительная сила в обществе.

Формирует методологию развития наук, учётом взаимосвязи с методикой и технологиями. Иначе науки исчезают в голом теоретизировании, в во взаимном использовании методик в пограничны науках и дисциплинах, рождаются стандартные технологии, типа Lego> в робототехнике.

Методология, методика и технологии соответствуют стратегии, тактике, технологии в любой деятельности и играх, например, шахматах . Методология, как фундаметальная наука определяет общую стратегию развития познания в целом и в отдельных науках, формируя границы познания, привлекая различные науки с учётом их сквозных связей, формируемых словами-категориями . Методика формирует тактические исследования и виды деятельности с учётом цели , смысла и понимания . Технологии создают базу возможностей в способах познания и деятельности. В шахматах это разнообразные фигуры, с правилами действий.

Наличие тождества гносеологии, аксиологии, онтологии в любой фундаментальной науки формирует в них отношения подобия - на этом уровне нет различий между естественными и гуманитарными науками.

Фундаментальные науки формируют систему сохранения, накопления и передачи интеллектуального капитала, который влияет на производительность труда во всех сферах жизни общества. Рентабельность фундаментальных наук намного превосходит отдельные научные достижения.

Так вторая статья федерального закона России от 23 августа 1996 года за № 127-ФЗ «О науке и государственной научно-технической политике» даёт такое определение фундаментальным исследованиям:

Экспериментальная или теоретическая деятельность, направленная на получение новых знаний об основных закономерностях строения, функционирования и развития человека, общества, окружающей природной среды.

История и эволюция

Стремление обнаружить сквозные связи между различными видами деятельности через формализацию и образное изложение, обеспечивали фундаментализм познания, наличие связей между физическим и духовным миром. Так в 8-ом веке д.н. э. философская школа инь ян цзя , (Книга Перемен) формирует представления о сквозных связях между горами, реками, морями, животными и людьми. Они до сих пор определяют особенности восточной медицины, в отличии от европейской и Российской, где доминируют симптоматический и нозологические принципы.

Абсолютизация опытного знания привела к доминированию плюрализма мнений и дистанционированию наук из управления общественными процессами. За последни 50 -ть лет в странах, Европы, США и России в научном познании исчезли методология, гуманизм в науках стал не внутренне присущим, а должным отношением. В течение этих лет РАН России, а потом и ФАНО , ежегодно составляли планы по поиску фундаментальных наук и проведению фундаментальных исследований. Но результатов нет не только в России, но и во всём мире.

Исчез фундаментальный подход и в организации образования. Согласно Болонскому Соглашению в России отказались от организации взаимосвязи "знания (А) - умения (В) - навык (С) и организации обучения с учетом способностей детей, студентов и потребностями общества. . В России тоже стали продавать отдельно знания , отдельно умения , отдельно навыки , назвав их компетенциями - чем разрушили систему образования, превратив её в отдельное и свободное от общества предприятие по продаже воздуха. Формирование практического разума повсеместно прекратилось.

Ошибки толкования

Об опасностях, которыми чревато неправильное понимание, и тем более - публичное освещение вопросов, имеющих отношение к достаточно сложным научным проблемам, предостерегал ещё М. В. Ломоносов в своём «Рассуждении об обязанностях журналистов при изложении ими сочинений, предназначенное для поддержания свободы философии» (1754); не теряют своей актуальности эти опасения и по сей день . Справедливы они и в отношении случающегося ныне толкования роли и значения фундаментальных наук, - отнесения к их компетенции исследований иной «жанровой» принадлежности .

Характерна ситуация, когда наблюдается непонимание самих терминов фундаментальная наука и фундаментальные исследования , - неправильное их употребление, и когда за фундаментальностью в контексте такого использования стоит обстоятельность какого-либо научного проекта. Такие исследования, в большинстве случаев, имеют отношение к масштабным изысканиям в пределах прикладных наук, к большим работам, подчинённым интересам тех или иных отраслей промышленности и т. п. Здесь за фундаментальностью стоит только атрибут значительности , притом никоим образом их нельзя отнести к фундаментальным - в том значении, о котором сказано выше. Именно такое неправильное понимание порождает деформацию представлений об истинном смысле действительно фундаментальной науки (в терминах современного науковедения), которая начинает расценивается исключительно как «чистая наука» в самом превратном толковании, то есть как наука оторванная от реальных практических потребностей, как обслуживающая, например, корпоративные проблемы яйцеголовых .

Достаточно быстрое развитие техники и системных методов (в отношении реализации полученного и давно «предсказанного» фундаментальной наукой) создаёт условия для иного рода неправильной классификации научных исследований, когда новое их направление, принадлежащее к области - междисциплинарных , расценивается как успех освоения технологической базы или наоборот, представляется только в виде линии развития - фундаментальных. В то время как последним эти научные исследования, действительно, обязаны своим происхождением, но имеют в большей степени отношение - к прикладным, и лишь косвенно служат развитию фундаментальной науки .

Примером тому могут служить нанотехнологии , основа которых сравнительно недавно, по срокам развития науки, была заложена, в числе многих других направлений фундаментальных исследований, - коллоидной химией , изучением дисперсных систем и поверхностных явлений . Однако это не значит, что лежащие в основе той или иной новой технологии фундаментальные исследования должны быть полностью подчинены ей, поглотив обеспечение других направлений; когда возникает опасность перепрофилирования в отраслевые научно-исследовательские учреждения, призванных заниматься фундаментальными исследованиями достаточно широкого диапазона .

См. также

Примечания

Литература

Loading...Loading...