Нейрофизиологические механизмы внимания.

Ориентировочная реакция (ОР) впервые была описана И.П. Павловым как двигательная реакция животного на новый, внезапно появляющийся раздражитель. Она включала поворот головы и глаз в сторону раздражителя и обязательно сопровождалась торможением текущей условно-рефлекторной деятельности. Другая особенность ОР заключалась в угашении всех ее поведенческих проявлений при повторении стимула. Угасшая ОР, легко восстанавливалась при малейшем изменении обстановки (см. Хрестомат. 6.2).

Физиологические показатели ОР. Использование полиграфической регистрации показало, что ОР вызывает не только поведенческие проявления, но и целый спектр вегетативных изменений. Отражением этих Генерализованный - широко распространяющийся.");" onmouseout="nd();" href="javascript:void(0);">генерализованных изменений являются различные компоненты ОР: двигательный (мышечный), сердечный, дыхательный, кожно-гальванический, сосудистый, зрачковый, сенсорный и электроэнцефалографический (см. тему 2). Как правило, при предъявлении нового стимула повышается Мышечный тонус - существующее почти все время слабое напряжение мышц, препятствующее полному расслаблению тела и помогающее поддержанию определенной позы.");" onmouseout="nd();" href="javascript:void(0);">мышечный тонус , изменяется частота дыхания, пульса, возрастает электрическая активность кожи, расширяются зрачки, снижаются сенсорные пороги. В электроэнцефалограмме в начале ориентировочной реакции возникает генерализованная активация, которая проявляется в блокаде (подавлении) Альфа-ритм - основной ритм электроэнцефалограммы в состоянии относительного покоя, с частотой в пределах 8 - 14 Гц и средней амплитудой в 30 - 70 мкВ.");" onmouseout="nd();" href="javascript:void(0);">альфа-ритма и смене его высокочастотной активностью. Одновременно с этим возникает возможность объединения и синхронной работы нервных клеток не по принципу их пространственной близости, а по функциональному принципу. Благодаря всем этим изменениям возникает особое состояние мобилизационной готовности организма.
Чаще других в экспериментах, направленных на изучение ОР, используют показатели кожно-гальванической реакции (КГР (кожно-гальваническая реакция) - изменение электрической активности кожи; измеряется в двух вариантах на основе оценки электрического сопротивления или проводимости различных участков кожи; используется при диагностике функциональных состояний и эмоциональных реакций человека.");" onmouseout="nd();" href="javascript:void(0);">КГР ). Она обладает особой чувствительностью к новизне стимула, модальна неспецифична, т.е. не зависит от того, какой именно стимул вызывает ОР. Кроме того, КГР быстро угасает, даже если ОР вызвана болевым раздражителем. Однако КГР тесно связана с эмоциональной сферой, поэтому использование КГР при изучении ОР требует четкого разделения собственно ориентировочного и эмоционального компонентов реагирования на новый стимул.

Нервная модель стимула. Механизм возникновения и угашения ОР получил толкование в концепции нервной модели стимула, предложенной Е.Н. Соколовым. Согласно этой концепции, в результате повторения стимула в нервной системе формируется "модель", определенная конфигурация следа, в которой фиксируются все параметры стимула. Ориентировочная реакция - (рефлекс) - вид безусловного рефлекса, вызываемый любым неожиданным изменением ситуации.");" onmouseout="nd();" href="javascript:void(0);">Ориентировочная реакция возникает в тех случаях, когда обнаруживается рассогласование между действующим стимулом и сформированным следом, т.е. "нервной моделью". Если действующий стимул и нервный след, оставленный предшествующим раздражителем, идентичны, то ОР не возникает. Если же они не совпадают, то ориентировочная реакция возникает и оказывается до известной степени тем сильнее, чем больше различаются предшествующий и новый раздражители. Поскольку ОР возникает в результате рассогласования афферентного раздражения с "нервной моделью" ожидаемого стимула, очевидно, что ОР будет длиться до тех пор, пока существует эта разница.
В соответствии с этой концепцией ОР должна фиксироваться при любом сколько-нибудь ощутимом расхождении между двумя последовательно предъявляемыми стимулами. Имеются, однако, многочисленные факты, которые свидетельствуют о том, что ОР далеко не всегда обязательно возникает при изменении параметров стимула.

Значимость стимула. Ориентировочный рефлекс связан с адаптацией организма к меняющимся условиям среды, поэтому для него справедлив "закон силы". Иначе говоря, чем больше изменяется стимул (например, его интенсивность или степень новизны), тем значительнее ответная реакция. Однако не меньшую, а нередко и большую реакцию могут вызвать ничтожные изменения ситуации, если они прямо адресованы к основным потребностям человека.
Кажется, что более значимый и, следовательно, в чем-то уже знакомый человеку стимул должен при прочих равных условиях вызывать меньшую ОР, чем абсолютно новый. Факты, однако, говорят о другом. Значимость стимула нередко имеет решающее значение для возникновения ОР. Высоко значимый стимул может вызвать мощную ориентировочную реакцию, имея небольшую физическую интенсивность.

Первый уровень оценки проходят практически все стимулы, второй и третий регистры работают параллельно. Пройдя любой из этих двух регистров, стимул поступает в последний и там оценивается его значимость. Только после этого завершающего акта оценивания развивается весь комплекс ориентировочной реакции.
Таким образом, ОР возникает не на любой новый стимул, а только на такой, который предварительно оценивается как биологически значимый. Иначе мы переживали бы ОР ежесекундно, так как новые раздражители действуют на нас постоянно. Оценивая ОР, следовательно, надо учитывать не формальное количество информации, содержащейся в стимуле, а количество семантической, значимой информации.
Существенно и другое: восприятие значимого стимула нередко сопровождается формированием ответной Адекватный - равный, тождественный, соответствующий.");" onmouseout="nd();" href="javascript:void(0);">адекватной реакции. Присутствие моторных компонентов свидетельствует о том, что ОР предоставляет собой единство воспринимающих и исполнительных механизмов. Таким образом, ОР, традиционно рассматриваемая как реакция на новый раздражитель, представляет частный случай ориентировочной деятельности, которая понимается как организация новых видов деятельности, формирование активности в изменившихся условиях среды (см. Хрестомат. 6.1).

6.2. Нейрофизиологические механизмы внимания

Одним из наиболее выдающихся достижений Нейрофизиология - раздел физиологии, объектом изучения которого является нервная система.");" onmouseout="nd();" href="javascript:void(0);">нейрофизиологии в ХХ в. явилось открытие и систематическое изучение функций неспецифической системы мозга, которое началось с появления в 1949 г. книги Г. Моруцци и Г. Мэгуна "Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ".
Ретикулярная формация наряду с лимбической системой образуют блок Модулирующая система мозга - специфические активирующие и инактивирующие структуры, локализованные на разных уровнях ЦНС и регулирующие функциональные состояния организма, в частности процессы активации в деятельности и поведении.");" onmouseout="nd();" href="javascript:void(0);">модулирующих систем мозга , основной функцией которых является регуляция функциональных состояний организма (см. тему 3 п. 3.1.3). Первоначально к неспецифической системе мозга относили в основном лишь сетевидные образования ствола мозга и их главной задачей считали диффузную Генерализованный - широко распространяющийся.");" onmouseout="nd();" href="javascript:void(0);">генерализованную активацию коры больших полушарий. По современным представлениям, восходящая неспецифическая активирующая система простирается от продолговатого мозга до зрительного бугра (таламуса).

Функции таламуса. Таламус, входящий в состав промежуточного мозга, имеет ядерную структуру. Он состоит из специфических и неспецифических ядер. Специфические ядра обрабатывают всю поступающую в организм сенсорную информацию, поэтому Таламус (зрительный бугор) - подкорковая структура, образованная двумя большими группами ядер, расположенными по обеим сторонам 3-го желудочка и связанных между собой серой спайкой. Таламус служит своего рода распределителем для информации от рецепторов, которую он интегрирует, интерпретирует и затем передает в мозг.");" onmouseout="nd();" href="javascript:void(0);">таламус образно называют коллектором сенсорной информации. Специфические ядра таламуса связаны, главным образом, с первичными проекционными зонами Анализатор - функциональное образование ЦНС, осуществляющее восприятие и анализ информации о явлениях, происходящих во внешней среде и в самом организме. А. состоит из периферического рецептора, проводящих нервных путей, центрального участка коры головного мозга, отвечающего за деятельность данного анализатора.");" onmouseout="nd();" href="javascript:void(0);">анализаторов . Неспецифические ядра направляют свои восходящие пути в Ассоциативные зоны коры - зоны, которые получают информацию от рецепторов, воспринимающих раздражение различной модальности, и от всех проекционных зон.");" onmouseout="nd();" href="javascript:void(0);">ассоциативные зоны коры больших полушарий. В 1955 г. Г. Джаспером было сформулировано представление о диффузно-проекционной таламической системе. Опираясь на целый ряд фактов, он утверждал, что диффузная проекционная таламическая система (неспецифический таламус) в определенных пределах может управлять состоянием коры, оказывая на нее как возбуждающее, так и тормозное влияние.
В экспериментах на животных было показано, что при раздражении неспецифического таламуса в коре головного мозга возникает реакция активации. Эту реакцию легко наблюдать при регистрации энцефалограммы, однако Активация - возбуждение или усиление активности, переход из состояния покоя в деятельное состояние.");" onmouseout="nd();" href="javascript:void(0);">активация коры при раздражении неспецифического таламуса имеет рад отличий от активации, возникающей при раздражении ретикулярной формации ствола мозга.

Таблица 6.1.

Реакции активации структур мозга

Функции фронтальных зон. Ретикулярная формация - сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (в продолговатом, среднем и промежуточном мозге). В области Р.ф. происходит взаимодействие поступающих в нее как восходящих - афферентных, так и нисходящих - эфферентных импульсов.");" onmouseout="nd();" href="javascript:void(0);">Ретикулярная формация ствола мозга и неспецифический таламус тесно связаны с корой больших полушарий. Особое место в системе этих связей занимают фронтальные зоны коры. Предполагается, что возбуждение ретикулярной формации ствола мозга и неспецифического таламуса по прямым восходящим путям распространяется на передние отделы коры. При достижении определенного уровня возбуждения фронтальных зон по нисходящим путям, идущим в ретикулярную формацию и таламус, осуществляется тормозное влияние. Фактически здесь имеет место контур саморегуляции: ретикулярная формация изначально активизирует фронтальную кору, а та в свою очередь тормозит (снижает) активность ретикулярной формации. Поскольку все эти влияния носят градуальный характер, т.е. изменяются постепенно, то с помощью двухсторонних связей фронтальные зоны коры могут обеспечивать именно тот уровень возбуждения, который требуется в каждом конкретном случае.
Таким образом, фронтальная кора — важнейший регулятор состояния бодрствования в целом и внимания как избирательного процесса. Она модулирует в нужном направлении активность стволовой и таламической систем. Благодаря этому можно говорить о таком явлении, как управляемая корковая активация.

Система внимания в мозге человека. Изложенная выше схема не исчерпывает всех представлений о мозговом обеспечении внимания. Она характеризует общие принципы нейрофизиологической организации внимания и адресуется, главным образом, к так называемому модально-неспецифическому вниманию. Более детальное изучение позволяет специализировать внимание, выделив его модально-специфические виды. Как относительно самостоятельные можно описать следующие виды внимания: сенсорное (зрительное, слуховое, тактильное), двигательное, эмоциональное и интеллектуальное. Клиника очаговых поражений показывает, что эти виды внимания могут страдать независимо друг от друга и в их обеспечении принимают участие разные отделы мозга. В поддержании модально-специфических видов внимания принимают активное участие зоны коры, непосредственно связанные с обеспечением соответствующих психических функций ().
Известный исследователь внимания М. Познер утверждает, что в мозге человека существует самостоятельная система внимания, которая анатомически изолирована от систем обработки поступающей информации. Внимание поддерживается за счет работы разных анатомических зон, образующих сетевую структуру, и эти зоны выполняют разные функции, которые можно описать в когнитивных терминах. Причем выделяется ряд функциональных подсистем внимания. Они обеспечивают три главные функции: ориентацию на сенсорные события, обнаружение сигнала для фокальной (сознательной обработки) и поддержание бдительности, или бодрствующего состояния. В обеспечении первой функции существенную роль играет задняя теменная область и некоторые ядра таламуса, второй — латеральные и Медиальный - срединный, расположенный ближе к срединной плоскости тела.");" onmouseout="nd();" href="javascript:void(0);">медиальные отделы фронтальной коры. Поддержание бдительности обеспечивается за счет деятельности правого полушария.
Действительно, немало экспериментальных данных свидетельствует о разном вкладе полушарий в обеспечение не только восприятия, но и избирательного внимания. По этим данным, правое полушарие в основном обеспечивает общую мобилизационную готовность человека, поддерживает необходимый уровень бодрствования и сравнительно мало связано с особенностями конкретной деятельности. Левое в большей степени отвечает за специализированную организацию внимания в соответствии с особенностями задачи.

6.3. Методы изучения и диагностики внимания

Экспериментальное изучение физиологических коррелятов и механизмов внимания осуществляется на разных уровнях, начиная от нервной клетки и кончая биоэлектрической активностью мозга в целом. Каждый из этих уровней исследования формирует свои представления о физиологических основах внимания.

Нейроны новизны. Наиболее интересные факты, иллюстрирующие функции нейронов в механизмах внимания, связаны с обеспечением Ориентировочная реакция - (рефлекс) - вид безусловного рефлекса, вызываемый любым неожиданным изменением ситуации.");" onmouseout="nd();" href="javascript:void(0);">ориентировочной реакции . Еще в 60-е гг. Г. Джаспер во время нейрохирургических операций выделил в таламусе человека особые нейроны — "детекторы" новизны, или внимания, которые реагировали на первые предъявления стимулов.
Позднее в нейронных сетях были выделены нервные клетки, получившие название нейронов новизны и тождества (). Нейроны новизны позволяют выделять новые сигналы. Они отличаются от других характерной особенностью: их фоновая импульсация возрастает при действии новых стимулов разной Модальность - род ощущений (например, осязание, зрение, обоняние и т.д.).");" onmouseout="nd();" href="javascript:void(0);">модальности . С помощью множественных связей эти нейроны соединены с детекторами отдельных зон коры головного мозга, которые образуют на нейронах новизны пластичные возбуждающие синапсы. Таким образом, при действии новых стимулов импульсная активность нейронов новизны возрастает. По мере повторения стимула и в зависимости от силы возбуждения ответ нейрона новизны избирательно подавляется, так, что дополнительная Активация - возбуждение или усиление активности, переход из состояния покоя в деятельное состояние.");" onmouseout="nd();" href="javascript:void(0);">активация в нем исчезает и сохраняется лишь фоновая активность.
Нейрон тождества также обладает фоновой активностью. К этим нейронам через пластичные Синапсы - места функциональных контактов, образуемых нейронами.");" onmouseout="nd();" href="javascript:void(0);">синапсы поступают импульсы от детекторов разных модальностей. Но в отличие от нейронов новизны, в нейронах тождества связь с детекторами осуществляется через тормозные синапсы. При действии нового раздражителя фоновая активность в нейронах тождества подавляется, а при действии привычных раздражителей, напротив, активизируется.
Итак, новый стимул возбуждает нейроны новизны и тормозит нейроны тождества, таким образом новый раздражитель стимулирует активирующую систему мозга и подавляет Синхронизация - согласованность ритмов энцефалограммы по частоте или фазе при регистрации ЭЭГ от различных зон коры больших полушарий или других образований мозга.");" onmouseout="nd();" href="javascript:void(0);">синхронизирующую (тормозную) систему. Привычный стимул действует прямо противоположным образом — усиливая работу тормозной системы, не влияет на активирующую.
Особенности импульсной активности нейронов человека при выполнении психологических проб, требующих мобилизации произвольного внимания, описаны в работах Н.П. Бехтеревой и ее сотрудников. При этом в передних отделах таламуса и ряде других структур ближайшей подкорки были зафиксированы стремительные возникающие вспышки импульсной активности, по частоте в 2-3 раза превышающие уровень фона. Характерно, что описанные изменения в импульсной активности нейронов сохранялись на протяжении выполнения всего теста, и только по его завершении уровень активности этих нейронов возвращался к исходному.
В целом в этих исследованиях установлено, что различные формы познавательной деятельности человека, сопровождающиеся напряжением произвольного внимания, характеризуются определенным типом нейрональной активности, четко сопоставимым с динамикой произвольного внимания.

Электроэнцефалографические корреляты внимания. Хорошо известно, что при предъявлении стимула в энцефалограмме наблюдается подавление (блокада) Альфа-ритм - основной ритм электроэнцефалограммы в состоянии относительного покоя, с частотой в пределах 8 - 14 Гц и средней амплитудой в 30 - 70 мкВ.");" onmouseout="nd();" href="javascript:void(0);">альфа-ритма , и на смену ему приходит реакция активации. Однако этим не исчерпываются изменения электрической активности мозга в ситуации внимания.
Исследование суммарной электрической активности при мобилизации интеллектуального внимания выявило закономерные изменения в характере совместной деятельности разных зон коры. При оценке степени дистантной синхронизации биопотенциалов было установлено, что в передних зонах левого полушария существенно по сравнению с фоном увеличивается уровень пространственной синхронизации. Сходные результаты дает использование и другого показателя, извлекаемого из энцефалограммы, — когерентности (см. тему 2 п. 2.1.1). В ситуации ожидания стимула независимо от его модальности наблюдается рост когерентности в полосе альфа-ритма, причем преимущественно в передних (премоторных) зонах коры. Высокие показатели дистантной синхронизации и когерентности говорят о том, насколько тесно взаимодействуют зоны коры, в первую очередь передних отделов левого полушария, в обеспечении произвольного внимания.

Изучение внимания с помощью ВП. Первые исследования внимания методом ВП использовали простые поведенческие модели, например, счет стимулов. При этом было установлено, что привлечение внимания испытуемых к стимулу сопровождается увеличением амплитуды компонентов ВП и сокращением их латентности. Напротив, отвлечение внимания от стимула сопровождается снижением амплитуды ВП и увеличением латентности. Однако оставалось неясным, чем обусловлены эти изменения параметров ВП: изменением общего уровня активации, поддержанием бдительности или механизмами избирательного внимания. Для разведения указанных процессов необходимо было построить эксперимент таким образом, чтобы его организация позволяла вычленить эффект мобилизации селективного внимания "в чистом" виде.
В качестве такой модели можно привести эксперименты С. Хильярда, которые получили в 70-е гг. широкую известность. При предъявлении звуковых стимулов через наушники в левое и правое ухо испытуемому предлагается мысленно реагировать (считать) редко встречающиеся ("целевые") стимулы, поступающие по одному из каналов (только в правое или левое ухо). В результате получают Вызванные потенциалы - биоэлектрические колебания, возникающие в нервных структурах в ответ на раздражение рецепторов и находящиеся в строго определенной временной связи с моментом предъявления стимула.");" onmouseout="nd();" href="javascript:void(0);">вызванные потенциалы в ответ на 4 варианта стимулов: часто встречающиеся в релевантном (контролируемом) и иррелевантном (игнорируемом) каналах и редко встречающиеся (целевые) в том и другом каналах. В этом случае появляется возможность сравнивать эффекты канала и стимула, которые являются объектом внимания. В экспериментах такого типа, как правило, применяются очень короткие интервалы между стимулами (немногим более или менее одной секунды), в результате усиливается напряженность и устойчивость избирательного внимания испытуемого к быстро чередующимся стимулам разной информационной значимости.

Слуховые вызванные потенциалы, отражающие привлечение селективного внимания к одному из каналов в ситуации различения звуковых сигналов (700 или 300 Гц) (по H. Hansen & S. Hillyard, 1982).
Высоко- и низкочастотные тоны предъявлялись в случайном порядке (приблизительно три раза в сек.). Испытуемые каждый раз обращали внимание только на один канал, пытаясь выделить сигнальные стимулы, имевшие большую длительность ВП в канале, к которому было привлечено внимание, имели выраженную негативную волну. Эта волна отчетливо выступает при вычитании ответа на сигнальный стимул из ответа на несигнальный - на рис. справа.

Было установлено, что привлечение внимания к одному из каналов ведет к увеличению амплитуды первой отрицательной волны с латентным периодом около 150 мс, обозначаемой как компонент N1. Целевые стимулы сопровождались появлением в составе ВП позднего положительного колебания Р3 с латентным периодом около 300 мс. Высказывалось предположение, что негативная волна N1 отражает "установку" на стимул, определяющую направленность произвольного внимания, а компонент Р3 — "установку на ответ", связанную с выбором варианта ответа. В дальнейшем компонент Р3 (чаще определяемый как Р300) явился предметом множества исследований (см. тему 10).
В более поздних исследованиях с помощью специального приема вычитания потенциалов, регистрируемых в ответ на сигнальные и стандартные стимулы, обнаружилось, что первая отрицательная волна N1 представляет собой неоднородный корковый феномен сложной структуры, в котором можно выделить особое отрицательное колебание, так называемую — "негативность, отражающую обработку информации". Это колебание с латентным периодом около 150 мс и длительностью не менее 500 мс регистрируется при несовпадении редко предъявляемого целевого стимула со "следом внимания", образуемым в Ассоциативные зоны коры - зоны, которые получают информацию от рецепторов, воспринимающих раздражение различной модальности, и от всех проекционных зон.");" onmouseout="nd();" href="javascript:void(0);">ассоциативной слуховой зоне и лобной области при частом повторении и воспроизведении стандартного стимула. При этом, чем меньше разница между этими стимулами, тем больше латентный период и тем длительнее отрицательное колебание, развивающееся в ответ на целевой, нестандартный стимул.
Кроме этого, описано еще одно отрицательное колебание, в ряде случаев сопровождающее ситуацию сравнения стимулов. Этот компонент, обозначаемый как "Негативность рассогласования - компонент вызванных или событийно-связанных потенциалов, характеризующий процессы непроизвольного внимания.");" onmouseout="nd();" href="javascript:void(0);">негативность рассогласования ", возникает в слуховой коре с латентным периодом 70-100 мс и отражает автоматический процесс сравнения физических признаков звукового стимула со следом стандартного стимула, хранящемся в течение 5-10 сек в сенсорной памяти. При отклонении физических свойств стимула от следа многократно предъявляемого стандартного стимула развивается "негативность рассогласования".
Предполагается, что в образовании волны N1 могут участвовать оба компонента ("негативность, связанная с обработкой информации" и "негативность рассогласования"). Причем первый из этих компонентов связан с предсознательной, непроизвольной оценкой признаков необычного звукового стимула, осуществляемой путем сравнения их с нервной моделью часто повторяющегося стимула, а второй компонент отражает процессы обработки сенсорной информации на сознательном уровне, а именно: произвольного внимания, фокусирования субъектом сознания на определенных критических признаках стимула и сравнения его со "следом внимания", хранящемся в рабочей памяти.
Таким образом, с помощью метода ВП было показано, что на целевые звуковые стимулы (в ситуации выбора стимула и канала) возникает два типа компонентов, один из которых отражает процессы сенсорной памяти, другой — селективного внимания.

Временные характеристики внимания. С помощью метода ВП можно оценить динамику развития процессов внимания в реальном времени. Вопрос заключается в следующем, на каком этапе обработки информации включаются процессы внимания? Поскольку начало первой негативной волны, возникающей в ответ на сигнальные стимулы, в основном приурочено к 50 мс от момента предъявления стимула, пятидесятимиллисекундная граница довольно долго рассматривалась как временной рубеж, после которого развертываются процессы селективного внимания.
Более детальные исследования, однако, показали, что в слуховой и, по-видимому, соматосенсорной системах произвольная регуляция процессов обработки поступающей информации включается не позже, чем через 20-30 сек. после предъявления стимула. Эффекты внимания в зрительной системе обнаруживают себя позднее, начиная с 60 мс. Не исключено, что и эти временные границы по мере совершенствования методов изучения будут изменены. Суть, однако, в том, что Хронометрия процессов переработки информации - совокупность методов измерения длительности отдельных стадий в процессе переработки информации на основе измерения физиологических показателей, в частности латентных периодов компонентов вызванных и событийно-связанных потенциалов.");" onmouseout="nd();" href="javascript:void(0);">хронометрия переработки информации и включения внимания как одного из главных регуляторов этого процесса с такой точностью может быть изучена только в психофизиологических экспериментах.

Словарь терминов

  1. ориентировочная реакция
  2. модулирующая система мозга
  3. активация
  4. ретикулярная формация
  5. вызванные потенциалы
  6. негативность рассогласования
  7. хронометрия процессов переработки информации

Вопросы для самопроверки

  1. Какие функции выполняют нейроны новизны?
  2. Как различаются генерализованная и локальная активация?
  3. Как отражается в параметрах вызванных потенциалов "установка на стимул" и "установка на ответ"?
  4. Какую функцию выполняют фронтальные доли мозга в обеспечении внимания?

Список литературы

  1. Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности. М.: МГУ, 1989.
  2. Дубровинская Н.В. Нейрофизиологические механизмы внимания. Л.: Наука, 1985.
  3. Кочубей Б.И. Об определении понятия ориентировочной реакции у человека. / Вопросы психологии. 1979. N 3.
  4. Мачинская Р.М., Мачинский Н.О., Дерюгина Е.И. Функциональная организация правого и левого полушария мозга человека при направленном внимании // Физиология человека. 1992. Т. 18. N 6.
  5. Наатанен Р., Алхо К., Сомс М. Мозговые механизмы селективного внимания // Когнитивная психология. М.: Наука, 1986.
  6. Нейрофизиологические механизмы внимания // Под ред. Е.Д. Хомской, М.: МГУ, 1979.
  7. Соколов Е.Н. Нервная модель стимула и ориентировочный рефлекс. / Вопросы психологии. 1960. N 4.
  8. Суворов Н.Ф., Таиров О.П. Психофизиологические механизмы избирательного внимания. Л.: Наука, 1985.
  9. Хомская Е.Д. Мозг и активация. М.: МГУ, 1973.

Темы курсовых работ и рефератов

  1. Исследования ориентировочной реакции в школе И.П. Павлова.
  2. Современные психофизиологические модели ориентировочной реакции.
  3. Исследования ретикулярной формации и реакций активации (Г. Моруцци - Г. Мэгун и современное состояние вопроса).
  4. Сравнительный анализ модально-неспецифического и модально-специфического внимания.
  5. Электроэнцефалографические корреляты процессов внимания.

Психика человека — социально обусловленный феномен, а не естественный продукт мозга. Однако реализуется она естественным физиологическим субстратом — мозгом. Функционирование организма как единого целостного образования обеспечивается нервной системой — совокупностью нервных образований.

Вся нервная система делится на центральную, периферическую и вегетативную . К центральной нервной системе относятся головной и спинной мозг . От них по всему телу расходятся нервные волокна — периферическая нервная система. Она соединяет мозг с органами чувств и исполнительными органами — мышцами. Вегетативная нервная система обслуживает мышцы внутренних органов и железы.

Рис. 1. Сигнал от рецептора (1) отправляется к спинному мозгу (2), и включившаяся рефлекторная дуга может вызвать отдергивание руки (3). Сигнал тем временем идет дальше к головному мозгу (4), направляясь по прямому пути в таламус и кору (5) и но непрямому пути к ретикулярной формации (6). Последняя активирует кору (7) и побуждает ее обратить внимание на сигнал. Внимание к сигналу проявляется в движениях головы и глаз (8), что ведет к опознанию раздражителя (9), а затем к программированию реакции другой руки с целью прогнать нежеланного гостя (10) .

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде. Воздействия среды, которые вызывают ответные реакции организма, называются раздражителями или стимулами . Раздражители среды (свет, звук, запах, прикосновение и т. п.) преобразуются специальными чувствительными клетками-рецепторами в нервные импульсы — серию электрических и химических изменений в нервном волокне. Нервные импульсы по приносящим (афферентным) нервным волокнам передаются в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по выносящим (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам).

Нервная система обеспечивает интеграцию внешнего воздействия с соответствующей реакцией организма (рис. 1).

Структурной единицей нервной системы является нервная клетка — нейрон . Он состоит из пяти частей: тела клетки, ядра, разветвленных отростков — дендритов (по ним нервные импульсы идут к телу клетки) и одного длинного отростка — аксона (по нему нервный импульс переходит от тела клетки к другим клеткам или — мышцам или железам). Аксон имеет множество отростков. Они соединены с дендритами соседних нейронов особыми образованиями — синапсами, которые играют существенную роль в фильтрации нервных импульсов: пропускают одни импульсы и задерживают другие.

Рис. 2. . Возбуждение рецептора и других нейронов изменяет мембранный потенциал дендритов (1) и тела клетки (2). Эффекты этих изменений сходятся на аксонном холмике (3). В результате этого нервный импульс начинает распространяться по аксону (4) и его концевым разветвлениям. Это активизирует синаптические концевые луковички - синапсы (5), которые в свою очередь изменяют мембранный потенциал других нейронов или мышечных волокон.

Нейроны, связываясь друг с другом, совершают объединенную деятельность. Различают три вида нервных клеток: чувствительные, двигательные, центральные (интернейроны) (рис. 5.). Центральные нейроны осуществляют информационные связи между чувствительными и двигательными нейронами. В человеческом мозге они образуют основную его массу, которую составляют около 20 млрд нервных клеток, соединенных множеством синапсов.

Кодирование информации в нервной системе происходит в виде биоэлектрохимичес-ких импульсов. Поступая от рецепторов или других нейронов, эти импульсы проходят через тело нейрона и, попадая на синаптическую бляшку аксона, открывают проходы через синаптическую щель (промежуток между аксоном одного нейрона и дендритом другого) для нейрогормонов (нейромедиаторов). В зависимости от соответствия возбужденных нейрогормонов одного нейрона нейрогормонам другого биоэлектрический потенциал переходит или не переходит от аксона на дендрит другой клетки. Таким образом, нейрогормоны позволяют возбуждать постсинаптический нейрон или блокируют передачу импульса. Закодированная в нервном импульсе информация избирательно направляется в определенные нервные ансамбли — функциональные системы (по теории П.К. Анохина).

Рис. 3. , составляющих нервную систему: двигательные, чувствительные, центральные. 1 - дендриты, 2 - тело клетки, 3 - аксон

Рис. 5. Движение процесса возбуждения может осуществляться во многих направлениях. Это зависит от сформированности функциональных систем.

Рис. 4. Пришедший по аксону (1) импульс не оказывает прямого электрического воздействия на нейрон, с которым этот аксон контактирует, а вызывает освобождение некоторого числа синаптических пузырьков (2), в которых заключен медиатор; эти пузырьки диффундируют через пресицаптическую мембрану (3) и синаптическую щель (4) и деполяризуют (или гиперполяризуют) постсинаптическую мембрану (5). Эффект каждой) синаптического возбуждения можете быть слабым, но совокупный эффект множества синапсов может оказаться выше порогового.

Сигналы внешней среды анализируются и синтезируются в многочисленных нейронных сетях. В коре мозга имеются связанные между собой сенсорные (чувствительные) и эффекторные (двигательные) зоны. Мозг человека — грандиозная система взаимосвязанных нейронов, материальный субстрат психики: приемник, преобразователь и передатчик биологической и социокультурной информации.

Рис. 6. . Белым шнуром расположился в канале позвоночной) столба спинной мозг. Его длина около полуметра. Справа и слева от него отходят 32 пары нервов. Они идут вглубь тела, образуя крупные сплетения. От них отходят новые ветви нервов, расходясь по всему телу тонкими нитями. В верхней своей части спинной мозг переходит в продолговатую часть головного мозга. Спинной мозг — отдел центральной нервной системы, центр многих безусловно-рефлекторных реакций: мышечно-двигательных, сосудо-двигательных и др.

Строение мозга.

Простейшие автоматизированные реакции, связанные с самосохранением и простейшими движениями, регулируются спинным мозгом , находящимся в позвоночном столбе (рис.). Спинной мозг переходит в продолговатый мозг головного мозга, регулирующий различные процессы жизнеобеспечения в организме (дыхание и др.). Здесь находится сетевидное образование — ретикулярная формация . Импульсы от органов чувств как бы заряжают эту формацию, и она оказывает активизирующее (тонизирующее) влияние на кору головного мозга.

Следующее образование — средний мозг , через который проходят все нервные пути от органов чувств к большим полушариям. Средний мозг регулирует работу органов чувств. Проявление врожденных ориентировочных рефлексов (прислушивание, всматривание) — результат деятельности среднего мозга. Над средним мозгом расположен промежуточный мозг , контролирующий сложные функции жизнеобеспечения (питание, защиту, размножение). Он включает в себя таламус, гипоталамус, лимбическую систему (рис. 6.).

По строению мозга ныне живущих животных, но находящихся на различных ступенях эволюционного развития, можно судить об эволюционном процессе формирования мозга человека: в нем представлены все структуры мозга, имеющиеся у нижестоящих организмов. Наиболее развита кора головного мозга человека, но ее зачатки имеются уже у рыб и рептилий.

В мозге человека имеются все те структуры, которые возникли на различных этапах эволюции живых организмов. Они содержат «опыт», накопленный в процессе всего эволюционного развития. Это свидетельствует об общем происхождении человека и животных.

Особенно развита у человека кора больших полушарий — орган высших психических функций. Общая площадь коры мозга в среднем равна 0,25 м². Ее толщина — 3-4 мм. Кора состоит из 6 слоев. Нервные клетки каждого слоя имеют специфическое строение и колонкообразное расположение. Они выполняют различные функции. Одна группа нейронов выполняет функцию анализа (дробления, расчленения нервного импульса), другая — осуществляет синтез , объединяет импульсы, идущие от различных органов чувств и отделов мозга (ассоциативные нейроны). Существует система нейронов, удерживающая следы от прежних воздействий и сличающая новые воздействия с имеющимися следами.

Рис. 7. , показывающий степень развития больших полушарий у человека и других животных: снизу вверх: мозг акулы, мозг ящерицы, мозг кролика, мозг человека; I — обонятельные доли; II — большие полушария; III — промежуточный мозг; IV — средний мозг; V — мозжечок; VI — продолговатый мозг.

По особенностям микроскопического строения всю кору мозга делят на несколько десятков структурных единиц — полей (поля Бродмана). Различают также четыре доли коры головного мозга: затылочную, височную, теменную и лобную, а также функциональные зоны .

Кора головного мозга человека — целостно работающий орган, хотя отдельные его части (области) функционально специализированы. Так, затылочная область коры выполняет сложные зрительные функции, лобно-височные — речевые, височная — слуховые. Различные части тела имеют свое «представительство” в коре мозга. Все отделы коры мозга взаимосвязаны. Обширные специализированные зоны коры обеспечивают речевую деятельность человека (рис. 9.).

В филогенетическом отношении кора головного мозга человека подразделяется на новую (неокортекс), старую (архикортекс) и древнюю (палеокортекс). В филогенезе у человека произошло абсолютное и относительное увеличение размера новой коры (95% всей площади коры).

Различаются три функциональных типа корковых зон: сенсорные, моторные и ассоциативные. Сенсорные (проекционные) корковые зоны осуществляют прием и анализ афферентных нервных импульсов, идущих от многообразных рецепторов через релейные ядра таламуса. Сенсорные зоны локализованы в различных частях коры: зрительная сенсорная зона расположена в затылочной области коры (17, 18, 19-е поля по Бродману); слуховая зона расположена в верхних отделах височной области (поля 41, 42); соматосенсорная зона, анализирующая нервные импульсы от рецепторов кожи, мышц, сухожилий и суставов, — в области постцентральной извилины (поля 1, 2, 3).

Рис. 8.

В прецентральной извилине находится моторная (двигательная) зона (поле 4), которая имеет двусторонние связи со всеми сенсорными зонами (рис. 9.). Значительная часть коры не имеет афферентных и эфферентных связей с периферией — это вторичные и третичные ассоциативные зоны коры , обеспечивающие интракортикальные связи. В передних отделах коры они занимают основное место (25%). Особенно развиты верхние ассоциативные слои коры с полисенсорными нейронами — они связаны со всеми сенсорными зонами. В ассоциативной зоне коры расположены центры, связанные с речевой деятельностью (центр Брока и центр Вернике). Здесь происходит словесно-знаковое кодирование поступающей в мозг информации, осуществляются нервные процессы, лежащие в основе интеллектуальноволевой деятельности человека, происходит декодирование сложных знаковых изображений, формируются программы поведения, происходит выделение наиболее значимых сигналов, осуществляется их сопоставление с прошлым опытом и на этой основе осуществляется опережающее отражение действительности.

Рис. 9. («карта» полей, составленная Институтом мозга Министерства здравоохранения СССР): а — латеральная поверхность полушария мозга; б — медиальная поверхность.

Подкорковые образования, регулируя врожденную безусловно-рефлекторную деятельность, являются областью тех процессов, которые субъективно ощущаются в виде эмоций (они, по выражению И.П. Павлова, являются «источником силы для корковых клеток»).

В настоящее время установлено, что различные участки коры мозга характеризуются различиями тонкого строения клеток (так называемая цитоархитектоника ) и различным расположением и распределением нервных волокон (так называемая миэлоархитектоника ). Исследованиями Фогта, Бродмана, Экономо и сотрудников Московского института мозга, руководимого С. А. Саркисовым, удалось выявить до 50 различных (обычно обозначаемых номерами) участков коры — корковых, цитоархитектонических полей, каждое из которых отливается от других по тонким, иногда, правда, с трудом уловимым особенностям формы, густоте расположения и распределению нервных клеток и волокон. На рис. 9 показана новая «карта» полей мозговой коры человека, использование которой весьма удобно как в клинической работе, так и в экспериментальных исследованиях.

Надо сказать, что само по себеописание различных цитоархитектонических полей (вдобавок нередко разбиваемых на более мелкие подразделения) еще ничего не позволяет сказать о функциях соответственного участка коры мозга. Задача заключается в углублении исследований, которые дадут возможность установить, каким функциональным особенностям соответствуют определенные различия в строении того или иного коркового поля (пока это удалось в общей форме сделать лишь для немногих полей, например для 4, 17).

Последствия полного удаления коры головного мозга.

Полное удаление коры мозга у млекопитающих (собаки) впервые осуществил Ф. Гольц. После ряда последовательных операций у собак Гольца в черепе сохранялись лишь продолговатый мозг, средний мозг с мозжечком, четверохолмие, зрительные бугры и часть полосатого тела. Одни из таких собак прожили 1,5 года, причем сохранить жизнь собак с удаленной корой можно было лишь при тщательнейшем уходе, искусственном кормлении (вкладывании пищи в рот), оберегании от вредоносных агентов. Самостоятельно питаться, уклоняться от вредных раздражений, реагировать на пищу, на кличку собака, лишенная коры мозга, не могла.

На основании этих опытов Гольц (как ранее Флюранс на основании опытов с полным удалением больших полушарий у птиц) подчеркнул, что удаление коры высшего отдела мозга ведет к полной потере нормальной ориентировки собаки в окружающей среде. Трактуя результаты своих исследований в понятиях и терминах, заимствованных из психологии, Гольц говорил о потере у бескорковой собаки способности понимать, узнавать, помнить события и предметы. Подкрепив своими опытами материалистический тезис об обусловленности психических функций деятельностью мозга, Гольц «не нашел в физиологии своего времени готовыми те понятия и термины, которыми можно было бы охарактеризовать потерянные и сохранившиеся функции собаки без коры больших полушарий» (А.Ф. Самойлов) . Лишь после развития И.П. Павловым учения об условных рефлексах глубокие нарушения поведения, наступающие после полного удаления мозговой коры, могли быть объяснены как следствие потери всех ранее выработанных рефлексов и невозможности выработки новых временных связей.

Удаление коры мозга приводит не только к исчезновению всех приобретенных в течение жизни реакций организма на сигнальные раздражения внешней среды — вследствие выпадения условных рефлексов, особенно условных рефлексов на интероцептивные раздражения, входящих в стереотип ряда сложнорефлекторных актов, меняется и деятельность внутренних органов. Б.И. Баяндуров показал (на птицах и грызунах), что удаление высшего отдела мозга значительно отражается на трофике, т. е. на питании тканей, их снабжении питательными веществами, на усвоении последних. После удаления больших полушарий резко замедляется рост молодых животных, меняется обмен веществ; наступает нарушение нормальной суточной периодики (А.Д. Слоним).

Все корковые зоны мозга функционируют в иерархической взаимосвязи — первичные зоны осуществляют раздробление, первичный анализ поступающей сенсорной информации; вторичные зоны выполняют функцию синтеза — объединения, интегрирования поступающей информации одной и той же модальности; третичные зоны — объединение информации, поступающей от отдельных анализаторов. Программирование, регуляцию и контроль деятельности осуществляют передние отделы мозга.

Рис. 10. : 1 — двигательный центр; 2 — чувствительный центр; 3 — центр зрения; 4 — центр слуха; 5 — моторный центр речи; 6 — слуховой центр речи.

Существуют различия в функциях правого и левого полушарий (функциональная асимметрия мозга). Функцией левого полушария является оперирование вербально-знаковой информацией (логические операции, чтение, счет). Функция правого полушария — оперирование наглядными образами, распознание объектов, образное мышление. Оба полушария функционируют взаимосвязанно.

Основными методами изучения работы головного мозга являются запись биотоков мозга — и метод анализа динамики условных рефлексов. Термин «рефлекс», как уже отмечалось, был введен французский ученым Рене Декартом в XVII в. Но для объяснения психической деятельности он был применен основоположником русской материалистической физиологии И.М. Сеченовым. Развивая учение И.М. Сеченова, И.П. Павлов экспериментально исследовал особенности функционирования рефлексов и использовал условный рефлекс как метод изучения высшей нервной деятельности. Все рефлексы были разделены им на две группы — безусловные и условные.

Безусловные рефлексы — врожденные реакции организма на жизненно важные раздражители (пишу, опасность и т. п.). Они не требуют каких-либо условий для своей выработки (например, выделение слюны при виде пиши). Безусловные рефлексы представляют собой природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Безусловные рефлексы одинаковы у всех особей одного вида. Они осуществляются с помощью спинного и низших отделов головного мозга. Сложные комплексы безусловных рефлексов проявляются в виде инстинктов .

Рис. 11. : 1 — слюноотделение вызывается безусловным раздражителем — пищей; 2 — возбуждение от пищевой» раздражителя связывается с предшествующим индифферентным раздражителем (светом лампочки); 3 — свет лампочки стал сигналом возможного появления нищи — на него выработался условный рефлекс.

Но поведение высших животных и человека характеризуется не только врожденными, то есть безусловными реакциями, но и такими реакциями, которые приобретены данным организмом в процессе индивидуальной жизнедеятельности, то есть условными рефлексами . Биологический смысл условного рефлекса состоит в том, что многочисленные внешние раздражители, окружающие животное в естественных условиях и сами по себе не имеющие жизненно важного значения, предшествуя в опыте животного пище или опасности, удовлетворению других биологических потребностей, начинают выступать в роли сигналов, по которым животное ориентирует свое поведение.

Итак, механизм наследственного приспособления — безусловный рефлекс, а механизм индивидуально изменчивого приспособления — условный рефлекс, вырабатываемый прижизненно при сочетании жизненно значимых явлений с сопутствующими сигналами (рис. 11.).

Открытие Павловым основного механизма высшей нервной деятельности — условного рефлекса — стало одним из революционизирующих завоеваний естествознания, историческим поворотным пунктом в понимании связи физиологического и психического. Однако наряду с условным рефлексом — основным механизмом поведенческого приспособления к условиям среды существуют и другие психофизиологические механизмы адаптации организма к среде — привыкание, латентное научение, запечатление (импритинг) и др.

С познания динамики образования и изменения условных рефлексов началось раскрытие сложных механизмов деятельности человеческого мозга, Выявление закономерностей высшей нервной деятельности. С понятием условного рефлекса И.П. Павлов связывал принцип сигнальности высшей нервной деятельности, принцип синтеза внешних воздействий и внутренних состояний. С открытых Павловым принципов и законов высшей нервной деятельности мы и рассмотрим нейрофизиологические основы психики.

Принципы и законы высшей нервной деятельности.

Деятельность коры головного мозга подчинена ряду принципов и законов. Основные из них впервые установлены И.П. Павловым. В настоящее время некоторые положения Павловского учения уточнены, развиты, а отдельные из них пересмотрены. Однако для овладения основами современной нейрофизиологии необходимо ознакомиться с фундаментальными положениями учения Павлова.

Аналитико-синтетический принцип высшей нервной деятельности. Как установлено И.П. Павловым, основным фундаментальным принципом работы коры больших полушарий головного мозга является аналитико-синтетический принцип. Ориентация в окружающей среде связана с вычленением отдельных ее свойств, сторон, признаков (анализ) и объединением этих признаков с тем, что полезно или вредно для организма (синтез). Синтез, как отмечал ученый, — замыкание связей, а анализ — все более тонкое отчленение одного раздражителя от другого.

Аналитико-синтетическая деятельность коры головного мозга осуществляется взаимодействием двух нервных процессов — возбуждения и торможения и подчинена следующим законам:

  • закону образования временной нервной связи — при многократном подкреплении нейтрального раздражителя безусловным (жизненно значимым) раздражителем между корковыми центрами этих воздействий образуется временная нервная связь;
  • закону угасания временной нервной связи — при многократном неподкреплении условного раздражителя безусловным временная нервная связь между ними угасает;
  • закону иррадиации возбуждения — очень сильные (как и очень слабые) раздражители при длительном воздействии на организм вызывают иррадиацию — распространение возбуждения по значительной части коры больших полушарий.

Так, наблюдая за спором двух людей, мы можем заметить внешнее проявление того, как возбуждение их речедвигательных зон постепенно нее более и более захватывает и другие двигательные зоны. Люди нередко начинают усиленно жестикулировать, быстро передвигаться с места па место, а при недостатке воспитания и воли некоторые переходят и к более «энергичным» действиям.

Иррадиация возбуждения вызывает значительное повышение тонуса коры мозга. В результате даже незначительные раздражители вызывают повышенную реакцию; нормальное течение мышления сменяется «скачкой мыслей». Только оптимальные раздражители средней силы вызывают строго локализированные очаги возбуждения, что и является важнейшим условием успешной деятельности;

  • закону взаимной индукции нервных процессов — на периферии очага одного процесса всегда возникает процесс с обратным знаком. Если в одном участке коры головного мозга сконцентрирован процесс возбуждения, то вокруг него индуктивно возникает процесс торможения. Чем интенсивнее возбуждение, тем интенсивнее и более широко распространен вокруг него процесс торможения.

Наряду с одновременной индукцией существует последовательная индукция нервных процессов — последовательная смена нервных процессов в одних и тех же участках мозга.

Только оптимальное соотношение процессов возбуждения и торможения обеспечивает поведение, адекватное (соответствующее) окружающей среде. Нарушение баланса между этими процессами, преобладание одного из них вызывает значительные нарушения в психической регуляции поведения. Так, преобладание торможения, недостаточное взаимодействие его с возбуждением приводят к снижению активности организма (вплоть до сна наяву). Преобладание возбуждения может выразиться в беспорядочной активности, ненужной суетливости, снижающей результативность деятельности.

Процесс торможения ограничивает и направляет в определенное русло процесс возбуждения, содействует сосредоточению, концентрации возбуждения. Торможение бывает внешним и внутренним . Если внезапно подействует какой-либо новый сильный раздражитель, то прежняя деятельность затормозится. Это — внешнее (безусловное) торможение. В данном случае возникновение очага возбуждения по закону отрицательной индукции вызывает торможение других участков коры.

Одним из видов внутреннего или условного торможения является угасание условного рефлекса , если он не подкрепляется безусловным раздражителем (угасательное Торможение). Этот вид торможения вызывает прекращение ранее выработанных реакций, если они в новых условиях становятся бесполезными. Торможение возникает и при чрезмерном перевозбуждении мозга. Оно защищает нервные клетки от истощения. Этот вид торможения называется охранительным. Торможение, лежащее в основе анализа, называется дифференцировочным — оно уточняет действия, делает их более приспособленными к окружающей среде;

  • закону системности в работе коры головного мозга (динамическому стереотипу) — реакция организма на тот или иной раздражитель зависит от сложившейся в коре системы связей (внешнее опосредовано внутренним). Опыты показывают, что если выработать ряд рефлексов на разные раздражители, которые повторяются в определенной последовательности, то со временем организм воспроизводит всю систему ответных реакций при воздействии лишь одного первоначального раздражителя. Устойчивое закрепление определенной последовательности реакций Павлов называл динамическим стереотипом . (Термин «стереотип» происходит от двух греческих слов stereos — твердый и typos — отпечаток.)

К стереотипно повторяющимся внешним воздействиям организм приспосабливается выработкой устойчивой системы реакций. Динамический стереотип — физиологическая основа многих навыков и привычек, приобретенных потребностей и др. Комплекс динамических стереотипов представляет собой физиологическую основу устойчивых особенностей поведения личности.

Динамический стереотип — выражение особого принципа работы мозга — системности . Этот принцип состоит в том, что на сложные комплексные воздействия среды мозг реагирует не как на ряд отдельных изолированных раздражителей, а как на целостную систему, в которой отдельные раздражители находятся в определенных взаимоотношениях.

Внешний стереотип — закрепление последовательности воздействий — отражается во внутреннем нейродинамическом стереотипе. К внешним стереотипам относятся все целостные предметы и явления (они всегда представляют собой определенную совокупность признаков), привычная обстановка, устойчивая последовательность событий, уклад жизни и т. д.

Ломка привычного стереотипа — тяжелое нервное напряжение (субъективно это выражается в тоске, унынии, раздражительности и т. п.). Как ни сложна ломка старого стереотипа, новые условия формируют новый стереотип (поэтому он и назван динамическим). В результате многократного функционирования он все более и более закрепляется и в свою очередь становится все более труднозаменяемым. Динамические стереотипы особенно устойчивы у пожилых людей и у лиц со слабым типом нервной деятельности, с пониженной подвижностью нервных процессов.

Рассмотренные выше основные положения учения И.П. Павлова о высшей нервной деятельности не утратили значимости и в наши дни. Однако некоторые из них были уточнены и развиты учениками и последователями великого физиолога. Одно из самых перспективных направлений в развитии учения И.П. Павлова возглавил его ученик, академик П.К. Анохин. Механизм условных рефлексов — фундаментальная, но не единственная основа работы головного мозга. Сам И.П. Павлов отмечал, что когда обезьяна строит вышку, чтобы достать плод, то это условным рефлексом назвать нельзя.

Современная наука о мозге — нейрофизиология — базируется на концепции функционального объединения механизмов мозга для осуществления различных поведенческих актов . Функциональной системой П.К. Анохин назвал единство центральных и периферических нейрофизиологических механизмов, которые в совокупности обеспечивают результативность того или иного поведенческого акта.

Первоначальная стадия формирования любого поведенческого акта названа П.К. Анохиным афферентным синтезом (в пер. с лат. — «соединение приносимого»). В его процессе из многочисленных образований мозга извлекается все то, что было связано в прошлом с удовлетворением данной потребности, т. е. решается вопрос: какой полезный результат должен быть получен в данной ситуации, при данной комбинации исходных возбуждений. В результате афферентного синтеза принимается решение — выбирается один из возможных вариантов действия, который больше всего удовлетворяет требованиям данной ситуации.

Нейрофизиологический механизм принятия решения основан на способности мозга прогнозировать параметры будущего результата действия. Этот механизм назван П.К. Анохиным акцептором результатов действия (от лат. acceptor — принимающий), представляющий собой нейрофизиологический механизм предвидения результатов будущего действия на основе обобщения ранее полученных результатов от аналогичных действий. Предвидение результатов действия — формирование цели действия. «Так как во всех наших действиях получение того или иного результата связано с заранее поставленной целью, то совершенно очевидно, что аппарат акцептора результатов действия практически является и аппаратом цели. Из этого положения вытекает, что цель в нашем понимании и в наших экспериментах не является чем-то изначальным, а подготавливается сложной работой нервной системы в стадии афферентного синтеза» .

На основе предвидения результатов готовящегося действия создается программа действия. И только после этого совершается само действие.

Ход действия, результативность его этапов, соответствие результатов сформированной программе действия постоянно контролируются путем получения сигналов о достижении цели. Механизм постоянного получения информации о результатах совершаемого действия назван П.К. Анохиным обратной афферентацией (афферентация — возбуждение под влиянием внешнего воздействия.) Осуществление каждого действия постоянно сопровождается сличением двух комплексов возбуждения: возбуждений, прогнозирующих действие, и возбуждений, поступающих по ходу совершения действия. Эти нейрофизиологические звенья регуляции деятельности представлены П.К. Анохиным в его схеме функциональной системы (рис. 12.).

В отличие от Павлова П.К. Анохин трактует подкрепление поведенческих актов не только эффектом действия безусловного раздражителя. Действие, по Анохину, подкрепляется его правильностью — афферентными сигналами о его адекватности ранее сформированной программе благодаря механизму сопоставления полученных результатов с заранее сформированным психическим образом этого результата (рис. 12.).

Рис. 12. Схема функциональной системы как модели поведенческого акта (по П.К. Анохину)

П.К. Анохин постулировал фундаментальный принцип системной работы мозга — принцип опережающего отражения действительности, частным проявлением которого служит и условный рефлекс.

Теория функциональных систем включила в единую систему такие компоненты поведения, как мотивация, память, эмоции, предвидение событий, программирование будущих результатов поведения. Отказавшись от упрощенно-универсальной схемы «стимул — реакция», П.К. Анохин раскрыл нейрофизиологический механизм активной деятельности. «Вряд ли можно сомневаться в том, что многие поведенческие акты формируются не в ответ на какой-то внешний стимул по типу «стимул — реакция», а на основе внутренних изменений и постепенно нарастающих возбуждений определенных структурных образований на уровне подкорки. Мы знаем много состояний, когда именно это состояние, а не внешний стимул определяет форму поведения животного и человека…» .

Раскрыв механизмы целенаправленных поведенческих актов, П.К Анохин поднял нейрофизиологию на современный системный уровень, содействовал ее интеграции с психологией. Ученики и последователи Анохина интенсивно развивают различные отрасли нейрофизиологии .

Типологические особенности высшей нервной деятельности.

В опытах И.П. Павлова было установлено, что действие тех или иных раздражителей зависит не только от их качества, но и от типологических особенностей высшей нервной деятельности. Под типологическими особенностями высшей нервной деятельности имеется в виду динамика протекания нервных процессов (возбуждения и торможения) у отдельных индивидуумов. Тип нервной деятельности характеризуется следующими тремя физиологическими свойствами нервной системы:

В зависимости от сочетания вышеуказанных свойств выделяются четыре типа высшей нервной деятельности .

Первый тип характеризуется повышенной силой нервных процессов, их уравновешенностью и высокой подвижностью (живой тип).

Второй тип характеризуется повышенной силой нервных процессов, но они неуравновешенны, возбудительный процесс преобладает над тормозным (безудержный тип).

Третий тип характеризуется повышенной силой нервных процессов, их уравновешенностью, но малой подвижностью (спокойный тип).

Четвертый тип характеризуется пониженной силой нервных процессов, пониженной их подвижностью (слабый тип).

Различные типы высшей нервной деятельности лежат в основе четырех темпераментов : сангвинического, холерического, флегматического, меланхолического.

Сила, уравновешенность и подвижность нервных процессов обеспечивают эффективность приспособления к среде. Если сила нервных процессов недостаточна, то организм страдает от значительных внешних воздействий и неадекватно реагирует на них (преувеличивается их значение, возникают срывы нервной деятельности, неврозы). При недостаточной подвижности или уравновешенности нервных процессов организм не может быстро приспособиться к внешним условиям, для него болезненна ломка стереотипа; он нередко впадает в невротическое состояние.

Однако, как показали исследования И.П. Павлова, сила и подвижность нервных процессов могут возрастать под влиянием тренировки, воспитания, соответствующих условий жизни. Природные конституционные особенности организма могут быть изменены — такой оптимистический вывод сделал И.П. Павлов исходя из научно-экспериментальных данных.

Особенности высшей нервной деятельности человека.

Рассмотренные выше принципы, закономерности и типы высшей нервной деятельности являются общими как для животных, так и для людей. Однако высшая нервная деятельность человека имеет существенные отличия. «В развивающемся животном мире на фазе человека произошла чрезвычайная прибавка к механизмам нервной деятельности. Для животного действительность сигнализируется почти только раздражениями и следами их в больших полушариях, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды… Это — первая сигнальная система действительности, общая у нас с животными. Но слово составило вторую, специальную нашу сигнальную систему действительности, будучи сигналом первых сигналов. Многочисленные раздражения словом, с одной стороны, удалили нас от действительности, и поэтому мы постепенно должны помнить это, чтобы не исказить наши отношения к действительности. С другой стороны, именно слово сделало нас людьми» .

Итак, первая сигнальная система действительности — система наших непосредственных ощущений, восприятий, впечатлений от конкретных предметов и явлений окружающего мира. Слово (речь) — вторая сигнальная система. Она возникла и развивалась на основе первой сигнальной системы и имеет значение лишь в тесной взаимосвязи с ней.

Благодаря второй сигнальной системе у человека более быстро, чем у животных, образуются временные связи, ибо слово несет в себе общественно выработанное значение предмета. Как отмечает И.П. Павлов, со словом «вводится новый принцип нервной деятельности — отвлечение и вместе обобщение бесчисленных сигналов… — принцип, обусловливающий безграничную ориентировку в окружающем мире и создающий высшее приспособление человека — науку» .

Действие слова в качестве условного раздражителя может иметь такую же силу, как непосредственный первосигнальный раздражитель. Под влиянием слова находятся не только психические, но и физиологические процессы (это лежит в основе терапевтического внушения и самовнушения). Слово возникло с появлением общества и является важнейшим общественным достоянием. Благодаря ему отдельный индивидуум может овладеть опытом всего человечества. Даже непосредственное восприятие человеком окружающей действительности опосредовано словом и носит обобщенный характер. Но слово, оторванное от его конкретных первосигнальных истоков, теряет смысл и перестает быть средством Ориентации человека в окружающей действительности. (Не понимая значения слова, мы воспринимаем лишь его звуковую оболочку.)

Вторая сигнальная система имеет две функции — коммуникативную (обеспечивает общение между людьми) и функцию отражения объективных закономерностей . Слово не только дает наименование предмету, но и содержит в себе обобщение.

Специфические человеческие типы высшей нервной деятельности.

Выше были рассмотрены типологические особенности высшей нервной деятельности, общие у человека и высших животных (4 типа). Но у людей имеются специфические типологические особенности, связанные со второй сигнальной системой. У всех людей вторая сигнальная система преобладает над первой. Но степень преобладания неодинакова. Это дало И.П. Павлову основание разделить высшую нервную деятельность человека на три типа: 1) мыслительный; 2) художественный; 3) средний (смешанный).

К мыслительному типу относятся лица со значительным преобладанием второй сигнальной системы над первой. У них более развито абстрактное мышление (математики, философы); непосредственное отражение действительности происходит у них не в ярких образах, а синтетически, обобщенно.

К художественному типу относятся люди с меньшим преобладанием второй сигнальной системы над первой. Им присущи живость, яркость конкретных образов (художники, писатели, артисты, конструкторы, изобретатели и др.).

Средний , или смешанный , тип людей занимает промежуточное положение между двумя первыми (около 80% всех людей).

Чрезмерное преобладание второй сигнальной системы, граничащее с отрывом от первой сигнальной системы, является негативным качеством, уводящим человека к бесплодной теоретизации, схоластике.

У людей с преобладанием первой сигнальной системы, как правило, менее развита склонность к абстрагированию, теоретизации. В основе «мыслительного» и «художественного» типов лежит доминирование у различных людей одного из полушарий мозга. Левое полушарие, как уже отмечалось, реагирует преимущественно на сигналы второй сигнальной системы, правое — на сигналы первой. Правое полушарие — орган образного мышления, образной памяти, левое — орган абстрактно-теоретического мышления.

Познание психики человека и деятельности его мозга взаимообусловлено. «Преждечем ответить на вопрос о том, каковы мозговые основы того или иного психического процесса, необходимо тщательно изучить строение того психического процесса, мозговую организацию которого мы хотим установить, и выделить в нем те звенья, которые в той или иной степени могут быть отнесены к определенным системам мозга» .

Психофизиологическая проблема — соотношение психического и физиологического.

Понимание психики как явления, с одной стороны, идеального, а с другой — как «продукта» высокоорганизованной материи порождает сложную проблему соотношения психического и физиологического — психофизиологическую проблему. Психику нельзя отрывать от работы мозга, но ее нельзя сводить и к нейрофизиологическим процессам. Взаимоотношение психики и физиологических процессов — взаимоотношение идеального и материального. Идеальное выступает как система субъективных образов объективного мира, как явление общественно-историческое. Нейрофизиология — естественное условие функционирования психического, но само психическое социально детерминировано. Нейрофизиология подчинена биологическим закономерностям; психика подчинена всеобщим законам объективных взаимосвязей явлений внешнего мира.

Условные рефлексы, функциональные системы по способу совершения — явления физиологические, а по итоговым результатам — психические. Психика не является прямым продуктом работы мозга. Мозг социально изолированного человека не может дать этого «продукта». Психика — социально опосредованный продукт мозговой деятельности. Идеальное — социально нормированное отражение действительности посредством нейрофизиологических процессов. Еще в начале XX в. известный английский нейрофизиолог Шерингтон заметил: «Рефлекторное действие и сознание как бы взаимно исключают друг друга — чем больше рефлекс является рефлексом, тем меньше он осознается» .

Как отмечает известный американский нейропсихолог Карл Прибрам, «результат поведения зависит от воздействия внешних условий на внутреннюю компетентность организма» . Эту «внутреннюю компетентность» мы и называем сознанием.

Чем же отличается мозг человека от мозга высших животных? — Способом кодирования поступающей извне информации . Механизм человеческого мозга — механизм кодирования речевых знаков, символов. Знак несет информацию о каком-либо общем свойстве действительности. То или иное свойство, признак предмета становится знаком, кодируется в мозге в качестве знака в результате обобщающей, аналитико-синтетической деятельности человеческого мозга.

Мозговые модели человека отражают не только внешние стороны действительности, но и ее внутренние, сущностные связи. Психическое отражение действительности человеком — отражение, опосредованное знаком, человеческим понятием, сформированным в общественно-исторической практике человека .

Рисунок заимствован из книги Ж. Годфруа «Что такое психология?». М., 1992;

Мозг человека состоит из колоссальной) множества клеток, каждая из которых в возбужденном состоянии создает электрический потенциал. Электрическая активность мозга впервые была зарегистрирована в виде электроэнцефалограммы Бергером в 1924 г. При низкой активности мозга масса клеток разряжается одновременно. На электроэнцефалограмме (ЭЭГ) это записывается в виде медленных волн (волн низкой частоты и большой амплитуды). К медленным волнам относятся альфа-волны (8-12 Гц), тета-волны (4 — 7 Гц) и дельта-волны (0,5 — 3 Гц). Все эти волны характерны для различных стадий сна.

В период активной работы мозга каждая клетка разряжается в соответствии со своей специфической функцией — в результате электрическая активность мозга становится асинхронной , она регистрируется в виде волн высокой частоты и малой амплитуды. Эти быстрые волны называются бета-волнами (13-26 Гц). Их амплитуда уменьшается по мере интенсивности мозговой деятельности, что и позволяет судить об уровне психической активности субъекта.

Не имея возможности рассмотреть здесь псе указанные адаптационные механизмы, поясним лишь явление импритинга . Введенный в науку известным Конрадом Лореицом в 1935 г. термин «импритинг» (запечатление) означает внезапное устойчивое запечатление отдельных объектов в качестве побудителей определенных форм поведения. Так, импритиг у гусят, выращенных в инкубаторе, проявляется в том, что они неотступно следуют за первым увиденным ими сразу после рождения движущимся предметом.

Наряду с подвижностью нервных процессов в 60-х гг. стали выделять лабильность нервных процессов (В.Д. Небылицын), под которой понимается скорость возникновения и прекращения нервных процессов.

В отечественной нейрофизиологии эта проблема интенсивно исследуется Н.П. Бехтеревой. См.: Бехтерева Н.П., Гоголицин Ю.Л., Кропотов Ю.Г., Медведев С.В. Нейрофизиологические механизмы мышления. Л., 1988.


Раздел третий. Нейрофизиологические механизмы бессознательного (Section three. The Neurophysiological Mechanisms of the Unconscious)

47. Смена гипотез о нейрофизиологических механизмах осознания. Вступительная статья от редакции (Change of Hypotheses on the Neurophysiological Mechanisms of Consciousness. Editorial Introduction)

47. Смена гипотез о нейрофизиологических механизмах осознания. Вступительная статья от редакции

(1) Вопрос о нейрофизиологической основе бессознательного выступает на современном этапе как обратная сторона проблемы, формулируемой более узко, но способной зато быть поставленной экспериментально: вопроса о нейрофизиологических механизмах, обуславливающих осознание психической деятельности. Легко понять, что, накопляя сведения о подобных механизмах, мы начинаем лучше понимать, какие мозговые процессы или состояния мозговых систем следует связывать с психической деятельностью, плохо пли даже вовсе не осознаваемой ее субъектом. Надо, однако, с самого начала указать, что разработка этой проблемы неизменно наталкивалась на огромные трудности, а ее результаты еще очень скудны и далеки от ясности.

Если проследить историю относящихся сюда исследований и попытаться наметить хотя бы в самых грубых чертах основные ее этапы, то обрисовывается характерная смена гипотез, каждая из которых оставила в науке нелегко стираемый след. Прежде всего здесь следует напомнить позицию, которую занял на заре века в вопросе о физиологических механизмах бессознательного и сознания 3. Фрейд. А далее - гипотезу, положенную И. П. Павловым в основу представления о факторах, обуславливающих осознание; попытки определения этих же факторов на основе результатов электроэнцефалографических исследований (Г. Джаспер, Г. Моруцци и др.) и, наконец, сближение проблемы осознания с проблемой правополушарной психики, начавшееся после известных операций рассечения мозолистого тела и межполушарных комиссур на человеке (Р. Сперри, М. Газзанига и др.). На каждом из этик этапов проблема физиологических основ сознания, а тем самым и бессознательного, толковалась по-разному. Мы напомним основные линии этих расхождений.

Позиция, занятая в обсуждаемом вопросе Фрейдом, хорошо известна. В литературе часто приводятся его высказывания, в которых, с одной стороны, подчеркивается неустранимость зависимости любой формы психической деятельности от лежащих в ее основе мозговых процессов, существование психологических феноменов только благодаря реализующим их физиологическим механизмам, а с другой - указывается, что помощь, которую могла оказать Фрейду современная ему нейрофизиология, была незначительной. Именно из-за этой малой информативности физиологии, подчеркивает Фрейд, он и пошел в попытках раскрытия законов душевной жизни человека по чисто психологическому пути. Тем самым проблема связи между осознанием и мозговым субстратом была для него как предмет исследования изначально снята.

Такое игнорирование проблемы вместо стремления найти хорошее ли, плохое ли, но какое-то определенное ее решение не могло, однако, быть последним словом исследования на протяжении сколько-нибудь длительного времени. И оно повлекло за собою в рамках самой же психоаналитической теории движение мысли в двух прямо противоположных направлениях. С одной стороны - вынужденного создания имплицитной "нейрофизиологии" (фрейдовской - "метапсихоло-гии"), всю чужеродность которой духу психоанализа подмечали многие еще задолго до работ Дж. Клайна (критика ортодоксального фрейдизма, о котором мы уже говорили во вступительной статье от редакции к II тематическому разделу). А с другой - отрицания права за нейрофизиологией объяснять данные психоанализа не из-за ее концептуальной слабости (упомянутая выше позиция Фрейда), а из-за принципиальной несводимости качественно своеобразных проблем, изучаемых психоанализом (динамики значений и смыслов), к категориям нейрофизиологического порядка (позиция Дж. Клайна, М. Гилла и др.).

В итоге же, несмотря на все различие этих ориентации, проблема отношения осознания к реальному мозгу снималась ими обеими в форме еще более радикальной, чем это было сделано на заре создания теории психоанализа самим Фрейдом.

Концептуальный подход И. П. Павлова оказался иным. Как это было естественно ожидать от исследователя, в центре внимания которого на протяжении долгих лет стояли вопросы нервного возбуждения и торможения, проблема осознания (а если говорить точнее - проблема ясности сознания) была поставлена им в прямую связь с проблемой возбуждения и возбудимости нервного субстрата. К вопросу об этой связи он возвращался неоднократно в обеих своих классических работах- в "Лекциях о работе больших полушарий" и в "Двадцатилетнем опыте", а чтобы придать своему пониманию более наглядную форму, он ввел в одной из своих лекций образ перемещающегося по коре больших полушарий светового пятна - своеобразную модель неустанного изменения степени возбуждения и возбудимости различных мозговых формаций.

Хорошо известно, как убедительно была подтверждена в дальнейшем (экспериментами, которые после открытия Мэгуном, Моруцци, Мак-Каллохом, Эрнандец-Пеоном и др. функций ретикулярной формации, активирующих и гипногенных систем также стали классическими) идея закономерной связи между возбуждением определенных нервных структур и изменением уровня бодрствования. Колебания уровня бодрствования не эквивалентны, конечно, феномену осознания в его психологическом понимании, - повышение уровня бодрствования является скорее лишь одной из предпосылок или одним из факторов осознания, - но вряд ли можно оспаривать, что определение физиологических механизмов изменения уровня бодрствования означало важный шаг в направлении раскрытия и тех физиологических процессов, от которых зависит осознание. Особенно отчетливо это было показано экспериментально при прослеживании влияния изменений уровня бодрствования на психологические процессы, связанные с осознанием качеств и последствий развертываемой субъектом деятельности. В художественной литературе проблема этих влияний была с поразительной прозорливостью отражена А. П. Чеховым в его трагическом рассказе "Спать хочется", повествующем о том, как под влиянием острой потребности во сне может в корне измениться осознание человеком не только окружающего, но даже значения и последствий его собственных поступков: мучительно страдая от потребности во сне, - и только вследствие этого, - няня убивает отданного на ее попечение, но мешающего ей спать маленького ребенка.

Нельзя поэтому не признать, что уходящая своими логическими корнями еще в первые павловские работы идея связи изменений уровня бодрствования с уровнем активности определенным образом локализованных десинхронизирующих и гипногенных мозговых систем открыла определенный путь для физиологического осмысления и сложнейшей, так долго остававшейся совершенно недоступной для рационального понимания проблемы мозговых механизмов осознания. Но, конечно, это был только первый шаг.

Дальнейшее продвижение в этой области оказалось связанным, главным образом, с дисциплиной, сложившейся окончательно лишь к концу первой половины нашего века и во многом повлиявшей на формирование представлений о законах работы мозга на уровне его как макро-, так. и, особенно, микросистем, - с электрофизиологией мозга. В настоящем коротком очерке нет, естественно, возможности сколько-нибудь подробно задерживаться на рассмотрении этого сложного развития мысли, мы ограничимся как его иллюстрацией только одним примером.

На состоявшемся около десяти лет назад в Риме представительном международном симпозиуме, посвященном проблеме "Мозг и осознаваемый опыт" , был заслушан доклад Г. Джаспера "Физиологические исследования, мозговых механизмов при разных состояниях сознания". В этом сообщении был в острой форме поставлен вопрос: существует ли особая нейронная система, функцией которой является осознание психической активности и которая отличается от систем, участвующих в выполнении таких, например, процессов, как автоматические движения, неосознаваемая переработка информации и т. п. Автор, один из ведущих электрофизиологов мира, напоминает фундаментальные положения, близкие тем, о которых мы только что говорили, а именно, что исследованиями последних лет была показана связь нейронных систем, располагающихся в центральных частях мозгового ствола и диэнцефалона, с функцией осознания восприятий. А далее он высказывается в пользу того, что взаимодействие именно этих систем с корой больших полушарий лежит в основе наиболее сложных форм интеграции, необходимых для осознания вообще, и что реализуется это взаимодействие при помощи особых (холинэргических) синаптических механизмов, отличающихся от синапсов, обеспечивающих обычную передачу информации.

Углубляя это представление, Джаспер формулирует далее мысль, значение которой подчеркнули клинические наблюдения и данные экспериментов, накопленные несколько позже. Он отмечает, что, чем более совершенной становилась техника изучения мозга, тем большую спе-циализированность отдельных нейронов и их местных ансамблей мы обнаруживали. Даже наиболее сложные функции мозга представляются теперь в какой-то мере локализованными и не обязательно вовлекающими "мозг как целое". В свете этих тенденций, ставит вопрос Джаспер, не является ли правдоподобным, что существуют высокоспециализированные нейронные системы, преимущественно ответственные за осознание? Косвенным доводом в пользу такого понимания является, по его мнению, хотя бы тот факт, что далеко не все клетки в коре отвечают на диффузный заревет сетчатки, обнаруживая тем самым, что активация разных корковых элементов обуславливается определенными различиями в структуре сигналов. В сходном духе, допуская существование особых высокоспециализированных синапсов, ответственных за накопление опыта и обучение, высказался на этом симпозиуме в докладе, посвященном механизмам сознания, и Г. Моруцци.

Предположение о связи функции осознания с определенными мозговыми системами, выдвинутое Джаспером и Моруцци на Римском симпозиуме 1964 г. на основе электрофизиологических данных, было углублено в дальнейшем в результате работ, произведенных в совсем другой области - в нейрохирургии. Уже на том же самом Римском симпозиуме был заслушан доклад Р. Сперри "Рассечение мозга и механизмы сознания", в котором были изложены наблюдения над двумя больными, подвергшимися в целях лечения от тяжелых эпилептических припадков операции рассечения мозолистого тела, передней и гиппокамповой комиссур. После операции у этих больных наблюдалась в высшей степени своеобразная картина двух разных "сознаний". Опыт, приобретаемый правым большим полушарием мозга, не сообщался левому, и наоборот. Это психическое расщепление можно было проследить на функциях восприятия, обучения, запоминания, мотивации и др.

В последующие годы количество больных, перенесших операцию рассечения нейронных связей между гемисферами, значительно увеличилось, а тщательное психологическое исследование оперированных позволило углубить уже давно производившееся в клинике изучение особенностей т. н. "правополушарнои" психики, выступающих в ряде отношений как своеобразные дополнения или "негативы" психики "левополушарной". Так, если левое (доминантное) мозговое полушарие оказалось связанным преимущественно с формами психической деятельности, имеющими сукцессивный (распределенный во времени) характер, основанными на логических умозаключениях, вербализуемыми и потому легко коммуницируемыми и осознаваемыми, то правое полушарие характеризовалось активностью скудно или даже вовсе не вербализуемой, имеющей не сукцессивный, а симультанный характер (характер "мгновенного схватывания"), восприятиями и решениями, которые основываются не на рациональном анализе, а скорее на чувстве немотивированной уверенности, возникающем без возможности проследить, почему и каким образом оно зародилось. Эти черты правополушарнои психики, приближающие ее к формам психической активности, обозначаемым обычно как работа интуиции, заставили некоторых исследователей рассматривать правую гемисферу как субстрат, имеющий особое отношение к неосознаваемой психической деятельности. Соче-танное же в норме функционирование правого и левого больших полушарий головного мозга объявляется при таком понимании основой характерной "двойственности" человеческого сознания, причиной постоянного, хотя и весьма иногда замаскированного, присутствия в его функциональной структуре рациональных и интуитивных компонентов, содержаний, из которых одни формируются на основе речи, со всеми вытекающими отсюда последствиями для их осознания, а другие - "безотчетно" т. е. без видимой, по крайней мере, связи с развернутой вербализацией.

В пользу этой общей концепции дифференцированного отношения к функции вербализации, а тем самым и к функции осознания, правых и левых корковых систем говорят и новейшие работы советских исследователей (Н. Н. Трауготт и др.), умело применивших методику т. н. локальных электрошоков, позволяющую дезактивировать (при наличии терапевтических, разумеется, показаний) на определенные интервалы времени разно локализованные мозговые структуры. Тщательное психологическое обследование больных в фазах подобной дезактивации, подтвердив, в основном, соотношения, выявленные при хирургическом разобщении полушарий, позволило углубить представление об этих соотношениях, еще более тесно связав функции правого полушария с разными формами немотнвируемых рационально знаний и оценок.

В заключение этого беглого очерка основных этапов формирования нейрофизиологических подходов к проблеме сознания, нельзя не упомянуть о последних работах Н. П. Бехтеревой .

Используя методику вживления в мозг (по терапевтическим показаниям) множественных электродов, Н. П. Бехтеревой удалось провести на человеке исследование активности отдельных нейронов и нейронных популяций, связанных с кодированием и декодированием словесных сигналов. Ею прослеживается, как при предъявлении психологических тестов формируются рабочие нейронные ансамбли, функционально объединенные в соответствии со смыслом решаемой задачи, как или, во всяком случае, где осуществляется взаимодействие импульсного кода и структурного кода долговременной памяти, в чем заключаются флюктруаци.и электрической активности мозга, обуславливаемые семантической нагрузкой сигналов и т. д. Хотя непосредственно эти исследования не направлены на выявление мозговой основы осознания, трудно преувеличить значение, которое они в этом плане могут иметь. Создается впечатление, что этими исследованиями Н. П. Бехтеревой, как и М. Н. Ливанова, А. А. Генкина и др., на данные которых она опирается, формируется оригинальное и очень важное направление нейрофизиологических поисков, которому суждено сыграть в ближайшие годы в разработке проблемы мозговых механизмов осознания быть может основную роль.

(2) Мы остановились выше на развитии современных представлений о физиологических факторах, обуславливающих осознание (а тем самым косвенно и на проблеме физиологических механизмов бессознательного), чтобы показать всю сложность этой проблемы и незавершенность предлагаемых в этой области гипотез. Вместе с тем, прослеживая смену этих гипотез, нетрудно обнаружить определенную их логическую преемственность, говорящую о наличии пусть весьма медленного, но ориентированного в определенном направлении движения мысли. Во всяком случае, когда сегодня ставится вопрос о мозговом субстрате бессознательного, то возвращение при его обсуждении к скептическому негативизму Фрейда - мы позволим себе здесь резкое слово-? было бы наивным. Огромный труд, затраченный нейрофизиологами на протяжении последней четверти века, не привел еще к созданию в этой области завершенных теоретических конструкций, не избавил нас все еще от унизительного чувства полной беспомощности. И задачей дальнейших экспериментальных поисков является, очевидно, шаг за шагом настойчиво углублять, пусть скромные, сведения, которыми мы уже располагаем.

В настоящем III разделе монографии представлены работы, пытающиеся с разных сторон подойти к проблеме физиологических основ бессознательного. Они охватывают широкий круг теоретических и экспериментальных вопросов.

Раздел открывается статьей хорошо известного советским читателям крупнейшего американского нейрофизиолога К. Прибрама "Осознаваемые и бессознательные процессы: нейрофизиологический и нейропсихологический анализ".

Мы уже отметили выше, что вопрос о нейрофизиологической основе бессознательного выступает в современной литературе своеобразно: преимущественно как обратная сторона, или как специальный аспект, проблемы более широкой (и более доступной для экспериментального исследования): нейрофизиологических механизмов, обуславливающих осознание психической деятельности. Именно с таких позиций и подходит Прибрам к вопросу о нейрофизиологии бессознательного.

Обобщая результаты своих работ, выполненных за последние десятилетия и позволивших создать специфическое направление в психофизиологии, т. н. "субъективный бихевиоризм", Прибрам излагает нейрофизиологическую концепцию, освещающую, с одной стороны, принципы регуляции (программирования) поведения (становление и активность "Планов"), связанные с идеей т. н. "опережающей" связи ("feed forward", - антитеза "связи обратной"), а с другой - формирование "Образов", указывающих на то, что адекватная модель мозга должна содержать, наряду с нейронным прототипом компьютера, также системы, работающие в соответствии с закономерностями голографии. Переходя более непосредственно к вопросу о соотношении сознания и бессознательного, Прибрам подчеркивает тесную связь первого с функциями внимания и речи (с "глубокими структурами языка"); дает интересную трактовку нейрофизиологических механизмов внимания и произвольного ("интенционального") поведения, движимого осознаваемыми мотивами; вычленяет как высшую форму сознания самосознание ("то, что делает, словами Брентано, человека человеком"). А в качестве естественной базы этих наиболее сложных проявлений мозговой деятельности рассматривает, - как выражение особых, качественно своеобразных форм работы мозга, - поведение автоматизированного, "инструментального", непроизвольного типа.

Для понимания основного в подходе Прибрама к проблеме бессознательного важно учесть, что именно этот последний тип поведения он считает возможным называть предсознательным, поскольку автоматизированные формы действий могут осуществляться как без их осознания субъектом, так и при необходимости осознанно. Но в таком случае, - ставит вопрос сам же Прибрам,-что такое бессознательное? И ответ, который дает этот бесспорно глубокий исследователь, своею сложностью и неуверенностью выявляет, насколько труден путь к решению проблемы бессознательного, если он предпринимается только с собственно-нейрофизиологических позиций, без учета специфических представлений психологии бессознательного.

Бессознательное, по мнению Прибрама, это то "третье", что не является ни "предсознательным автоматизмом", ни "интенционально ориентированным самосознанием". Чувствуя, однако, всю неудовлетворительность такого определения через исключение, Прибрам прибегает к метафорам и аналогиям, заимствованным из теории компьютеров ("hardware", "software") и в конечном счете склоняется, по-видимому, (эти мысли выражаются им, возможно намеренно, в недостаточно определенной форме) к уподоблению бессознательного программирующему устройству, которое направляет и контролирует формализуемые операции, выполняемые ЭВМ.

Если перевести это сложное построение на язык психологических понятий, то не означает ли оно, что идея бессознательного отождествляется Прибрамом или хотя бы в какой-то степени сближается с идеями неосознаваемого мотива и неосознаваемой психологической установки?

Если это действительно так, то представление о бессознательном как о категории семантической, как о факторе, способном к смысловому (а отнюдь не только к "автоматическому") регулированию, так парадоксально выпадающее из системы представлений Прибрама, устраняется, и мы вновь оказываемся в кругу идей, обосновываемых всем опытом современной психологии.

Однако такая интерпретация позиции Прибрама должна проводиться с осторожностью, чтобы не произошло невольного навязывания ему толкований не во всем, возможно, для него приемлемых.

Следующие две статьи (О. С. Адрианова "Значение принципа многоуровневой организации мозга для концепции осознаваемых и неосознаваемых форм высшей нервной деятельности", К. В. Судакова и А. В. Котова "Нейрофизиологические механизмы сознательных и подсознательных мотиваций") посвящены проблеме форм высшей нервной деятельности, которые у животных являются как бы своеобразными предвестниками последующей дифференциации психической деятельности человека на ее осознаваемые и неосознаваемые компоненты. О. С. Адрианов останавливается в этой связи на концепции "автоматизмов" поведения, подчеркивая активный характер отражательного процесса уже на уровне анализаторных систем. Он сближает идею "опережающего возбуждения" (в понимании П. К- Анохина) с идеей психологической установки (в понимании Д. Н. Узнадзе), показывая необходимость использования обеих этих категорий для раскрытия функциональной структуры самых разных форм мозговой деятельности. Им подчеркивается также характерная общая закономерность, определяющая динамику неосознания, - осознание целого сопровождается уменьшением осознаваемости частей этого целого - и дается физиологическая интерпретация этого феномена. В работе же К. В. Судакова и А. В. Котова внимание привлекается к сложной проблеме мотивационного возбуждения и его влияния на поведение животных. Авторы проводят границу между мотивационным возбуждением, проявляющимся элек-трофизиологически, в условиях наркоза (рассматривая его условно как возбуждение "подсознательное"), и возбуждением, наблюдаемым в условиях бодрствования животного (возбуждение "осознаваемое"). Они обращают внимание на особую роль разных форм мотивации, как "подсознательных", так "осознаваемых", в анализе и синтезе внешних раздражений, на их связь с афферентным синтезом, лежащим в основе функциональных систем поведенческих актов, на их взаимоотношение с "акцептором результатов действия" (аппаратом прогнозирования и оценки результатов целенаправленной активности).

В следующем сообщении (А. И. Ройтбак, "К вопросу о бессознательном с точки зрения нейроглиальной гипотезы образования временных связей") излагается оригинальная концепция, согласно которой формирование и консолидация временных связей зависят в определенных отношениях от процессов миелинизации центральных аксонов. Развивая эту концепцию, автор приходит к предположению, что в основе неосознаваемой психической деятельности лежат нейродинамические процессы со специфической микрофизиологической функциональной структурой, допускающие сочетание "индифферентного" раздражения возбуждающих терминалей, оканчивающихся на определенном нейроне "потенциальными" возбуждающими синапсами, с раздражениями, вызывающими торможение того же нейрона.

Не менее интересной является публикуемая далее статья видного американского физиолога Г. Шеврина, озаглавленная автором как обзор данных в пользу существования неосознаваемой психической деятельности, выявляемых анализом вызванных потенциалов мозга. Статья содержит, однако, описание и весьма важных для теории бессознательного собственных экспериментов автора. Этими экспериментами Шеврин обосновывает тезис о существовании "когнитивных" процессов, развертывающихся без их осознания субъектом. Он полагает также, что электрофизиологические данные говорят об адекватности известного психоаналитического разграничения между активностью бессознательного и активностью "подсознания".

В сообщении Н. А. Аладжаловой ("Периодичность сверхмедленных мозговых потенциалов в ее связях с характером психической деятельности") показано наличие закономерных связей между динамикой т. н. сверхмедленных мозговых потенциалов и ритмическим характером некоторых форм психической деятельности человека. Автор формулирует на основе анализа этих связей важную и еще не прозвучавшую в литературе мысль об усилении периодичности сверхмедленных потенциалов по мере нарастания в структуре психических процессов их неосознаваемых компонентов, по сравнению с осознаваемыми.

В очень тщательно, в экспериментальном отношении, выполненном исследовании Э. А. Костандова ("О физиологических механизмах "психологической защиты" и безотчетных эмоций") показана возможность смыслового различения определенных ("высокозначимых") слов без их осознания (в этом плане работа Костандова перекликается с упомянутой выше работой Шеврина). Автор объясняет этот парадоксальный, в высшей степени интересный феномен на основе представления, по которому решающим звеном в структурно-функциональной организации головного мозга, обеспечивающим осознание раздражителя, является активация двигательной речевой области, хотя гностические зоны, воспринимающие в какой-то степени зрительную и слуховую речь, имеются и в правом (субдоминантном) полушарии. Это представление автор обосновывает анализом особенностей вызванных потенциалов, возникающих при предъявлении осознаваемых и неосознаваемых раздражителей. Изменения же порога осознания, выступающие как функция семантики предъявляемых слон, он рассматривает как своеобразное проявление "психологической защиты".

В третьем из сообщений, использующих электрофизиологические методы, Л. Б. Ермолаевой-Томиной "К проблеме произвольного и непроизвольного регулирования электрических потенциалов головного мозга" приводятся данные, показывающие возможность изменения ритмики ЭЭГ, возникающего как непроизвольно (при стимуляции мелькающим светом), так и произвольно, т. е. на неосознаваемом и осознаваемом уровне. Возможность изменения типа ЭЭГ коррелирует определенным образом, по данным автора, с особенностями характера интеллектуальной деятельности.

Проблема ауторегуляции электрической активности мозга, исследованная Л. Б. Ермолаевой-Томиной, является центральной и для статьи С. Криппнера (США) "Психофизиология, конвергирующие процессы и изменения сознания". В его статье приведены экспериментальные данные, показывающие возможность как произвольного подавления, так и произвольной активации альфа-ритма на основе использования принципа обратной связи (в данном случае - шумовой сигнализации, сообщающей испытуемому о результате его усилий изменить уровень альфа-активности его мозга).

Данные обоих этих исследований (Л. Б. Ермолаевой-Томиной и С. Криппнера) позволяют расширить представление о возможностях вмешательства произвольной -регуляции в динамику процессов, которая, согласно традиционным представлениям, рассматривается как регулируемая только неосознаваемым образом.

Исследованию сенсорной настройки как психофизиологического выражения целевой установки методом регистрации вызванных потенциалов посвящена публикуемая далее статья Л. А. Самойловича и В. Д. Труша.

Во втором сообщении Г. Шеврина, завершающем цикл электрофизиологических работ, описана оригинальная методика объективации проявлений бессознательного, основанная на одновременной записи вызванных потенциалов и свободных ассоциаций. Автор различает между ассоциациями по созвучию и ассоциациями по смыслу, постулируя близость первых преимущественно к неосознаваемой, вторых - к осознаваемой психической деятельности, и устанавливает наличие определенных корреляций между каждой из этих форм ассоциативной деятельности, с одной стороны, и структурой вызванных потенциалов и последействием различных фаз сна, - с другой. Он отмечает определенную связь между своей работой и исследованиями, выполненными ранее советскими авторами - А. Р. Лурия и О. М. Виноградовой. При истолковании природы неосознаваемой психической деятельности Шеврин отклоняет представление, по которому бессознательное это лишь плохо оформленные содержания, относящиеся к раннему детству, он видит в нем скорее специфический уровень организации того же множества содержаний, с которым имеет дело и сознание.

В следующих статьях проблема бессознательного интерпретируется в свете классических представлений общей нейрофизиологии - на основе ее связей с учением А. А. Ухтомского о доминанте (Т. Досужков, "Доминанта и психоанализ"); представлений павловской физиологии и новых данных о разобщении мозговых систем (Н. Н. Трауготт, "Проблема бессознательного в нейрофизиологических исследованиях"; В. М. Моеидзе, "Пациенты с расщепленным мозгом"; Л. Г. Воронин, В. Ф. Коновалов, "Роль неосознаваемой и осознаваемой сфер высшей нервной деятельности в механизмах памяти") и некоторых новейших нейрофизиологических и нейроисихологичееких подходов (Б. М. Величковский, А. Б. Леонова, "Психология установки и микро-структурный подход"; Л. Р. Зенков, "Некоторые аспекты семиотической структуры и функциональной о;рганизации правополушарного мышления").

В работе Т. Досужкова (ЧСР) дан интересный анализ связей, существующих между теорией доминанты и основными представлениями психоаналитической теории, о которых неоднократно говорил и сам А. А. Ухтомский. Автор показывает, что даже такие специфические психоаналитические представления, как относящиеся к проявлениям бессознательного во сне, к активности влечений, к причинам возникновения психосоматических расстройств, к фазам развития детской сексуальности и др., могут быть более глубоко раскрыты и получить физиологическое обоснование при их сближении с концепцией доминанты.

В. М. Мосидзе приводит новейшие данные, позволяющие подойти к проблеме бессознательного на основе наблюдения клинических случаев хирургического "расщепления" мозга.

В статье Н. Н. Трауготт проблема бессознательного рассматривается в разных аспектах: в плане возможностей контроля сознанием непроизвольных физиологических реакций; с позиций представления о подпороговом (субсенсорном) накоплении информации; в связи с концепцией аффективных комплексов ("патодинамических структур") и их роли в регуляции поведения. Особое же внимание автор уделяет упоминавшейся выше проблеме межполушарных мозговых асимметрий: определению специфических функциональных особенностей субдоминантной гемисферы, обнаруживающихся при использовании в терапевтических целях методики локальных электрошоков. Применение этой техники позволило интересным образом углубить данные, полученные американскими нейропсихологами и нейрохирургами путем рассечения межполушарных мозговых комиесур. В своем анализе Н. Н. Трауготт широко использует теоретические представления павловской школы, включая понятия, введенные ряд лет назад А. Г. Ивановым-Смоленским.

В работе Л. Г. Воронина и В. Ф. Коновалова представлены результаты экспериментального исследования роли бессознательного в механизме памяти. Авторы показывают, что при определенных условиях могут возникать формы работы головного мозга, при которых осознаваемая и неосознаваемая психическая деятельность развертываются одновременно и до некоторой степени независимо друг от друга. Анализ этого феномена так же, как в предыдущем сообщении, дается с позиции классических представлений павловской школы. Принципиальное значение имеет формулируемый авторами тезис о неэквивалентности понятий "первая сигнальная система" и "неосознаваемый уровень высшей нервной деятельности".

В статье Б. М. Величко в акого и А. Б. Леоновой рассматривается проблема объективного изучения скрытых от непосредственного ("внешнего" и "внутреннего") ?наблюдения психических процессов при микро-структурном подходе к ним с позиции психологии установки. В частности, Б. М. Белич.ковский и А. Б. Леонова высказывают мнение, что микросгруктуркый анализ этих процессов может оказаться одним из путей практического преодолении так называемого "постулата непосредственности" в психологии.

В центре внимания Л. Р. Зенкова, так же как в заключительной части сообщения Н. Н. Трауготт, - проблема полушарных мозговых асимметрий. Автор подходит к этой проблеме с привлечением весьма интересных данных из области искусства (анализ манеры живописи древних мастеров); идей Рагга о "трансламинарной динамической сфере" ("середине" психического континуума "бессознательное - сознание"); эффектов действия дроперидола в ситуации эмоционального стресса; т. н. "иконического" характера кодов, используемых при невербальном мышлении (иконический код - код, составленный из знаков, обладающих некоторыми свойствами их денотатов), и в этой связи - принципов голографии. Новейшие теоретические категории, к которым обращается автор, и полученные им оригинальные экспериментальные данные придают его исследованию актуальный характер и могут стимулировать интересные дискуссии.

Хорошо известно, какое большое значение для общей теории бессознательного и для психоаналитических представлений имеет проблема неосознаваемого мотива и его роли в организации поведения. Физиологический аспект этой проблемы освещен в литературе, однако, очень скудно. В этой связи представляет значительный интерес попытка экспериментально проследить физиологические механизмы и признаки, а также психологические проявления постепенного нарастания силы конкретного мотиза - сексуального влечения - с переходом последнего из фазы неосознаваемой в фазу осознаваемую, представленная в докладе В. М. Ривпна и И. В. Ривиной. Авторы показывают, как прогрессирующее нарастание интенсивности мотива изменяет уже на начальной стадии его формирования - стадии неосознания - общую структуру психической деятельности, включая даже такие формы функциональной активности, которые непосредственно с этим мотивом не связаны.

Различные нейрофизиологические и нейропсихологические аспекты проблемы неосознания затрагиваются также в следующих далее работах Д. Д. Бекоевой, Н. Н. Киященко ("О нейропсихологическом аспекте исследования фиксированной установки"), Л. И. Сумекого ("Некоторые аспекты функциональной активности мозга при коматозном состоянии"), В. Н. Пушкина, Г. В. Шавырина ("Саморегуляция продуктивного мышления и проблема бессознательного в психологии").

В завершающей этот раздел статье Л. М. Сухаребского "О стимулировании творческих возможностей бессознательного" затрагивается вопрос о роли психологических установок в сохранении здоровья человека и о некоторых специфических приемах стимулирования творческого интеллектуального процесса (методика "мозговой атаки", "си-нектика", "индуцирование психоинтеллектуальной деятельности"). Автор высказывается в пользу тесной связи этих приемов, как и психологических установок, с неосознаваемой психической деятельностью oи ее скрытыми еще очень малоизученными потенциями.

Таково основное содержание обсуждаемого III тематического раздела настоящей коллективной монографии. К некоторым же более специальным вопросам нейрофизиологии и нейропсихологии бессознательного читателям предстоит еще вернуться в следующих двух разделах II тома данной монографии, посвященных проблематике сна, гипноза и клинической патологии.

47. Change of Hypotheses on the Neurophysiological Mechanisms of Consciousness. Editorial Introduction

It is noted that in current studies the problem of the neurophysiological basis of unconscious mental activity emerges as the reverse of another problem, which is stated more narrowly but which is more amenable to experimental investigation: namely the neurophysiological mechanisms responsible for the awareness of mental activity.

The negative stand taken by S. Freud on the problem of the physiological basis of consciousness and the unconscious is described. Further, the evolution of rrore constructive ideas on the subject is traced: the hypothesis assumed by I. P. Pavlov as the basis of his concepton of the physiological mechanisms of consciousness; an attempt at an electrophysiological determination of the factors leading to consciousness (G. Magoun, G. H. Jasper, G. Moruzzi, and others); the approach of the problem of consciousness to that of the right hemispheric mind, following the operations of the section of the corpus callosum and interhemispheric commissures in man (P. Sperry, M. Gazzaniga and others).

It is noted that evidence on the functional specificities of the subdominant hemisphere, brought to light through its surgical switch-off from the dominant hemisphere, was further augmented on the basis of observations using the method of local electric shocks Cwork of Soviet researchers - N. N. Trau-gott and others). This research led to the identification of features of the so-called right-hemispheric mind (emphasis on non-verbalizable forms of thinking activity; on psychological processes of simultaneous rather than successive nature, i. e. of "instantaneous grasping"; on decisions based not on rational analysis but on the feeling of unmotivated assurance, and so on) which stimulated interest in the problem of the special role of the subdominant hemisphere in forms of mental activity during which such intellectual and mental processes come to the fore that develop without recourse to formalizable features, and hence are poorly realizable.

Attention is drawn to the significant role which research on the activity of neuronal populations as related to the coding and decoding of verbal cues can play in the future elabarat"o:i of the problem of the cerebral bas"s of consciousness (N. P. Bekhtereva).

A condensed description is given of the papers contained in the third section; these contributions throw light, from different angles, on the problem of the neurophysiological mechanisms of consciousness and awareness, as well as on the question of the physiological basis of unconscious sexual drive.

Литература

1. Бехтерева Н. П., Нейрофизиологические аспекты психической деятельности человека, Л., 1971.

2. Бехтерева Н. П., Бундзен П. В., Нейрофизиологическая организация психической деятельности человека. В сб.: Нейрофизиологические механизмы психической деятельности человека, Л., 1974. 3.ECCLES. J. С (Ed.), Brain and Conscious Experience, 4, Berlin-Heidelberg - N.Y.. 1966.

Лекции по общей психологии Лурия Александр Романович

Нейрофизиологические механизмы активации. Активирующая ретикулярная система

Нейрофизиологические механизмы активации. Активирующая ретикулярная система

Исходным для современного исследования нейрофизиологических механизмов внимания является тот факт, что избирательный характер протекания психических процессов, характерных для внимания, может быть обеспечен лишь бодрственным состоянием коры, для которого типичен оптимальный уровень возбудимости. Этот бодрственный уровень коры может быть обеспечен только механизмами, поддерживающими нужный тонус коры, а эти механизмы связаны с сохранением нормальных отношений верхнего ствола с корой головного мозга, и прежде всего с работой той восходящей активирующей ретикулярной формации, роль которой мы уже описывали выше.

Именно эта восходящая активирующая ретикулярная формация доносит до коры:

Те импульсы, которые исходят от обменных процессов организма, реализуются влечениями и сохраняют кору в состоянии бодрствования;

Те возбуждения, которые исходят из работы экстеро - рецепторов, доводящих информацию, приходящую из внешнего мира, сначала в верхйие отделы ствола и ядра зрительного бугра, а затем и в кору головного мозга.

Как уже указывалось выше, отделение ретикулярной формации ствола от коры головного мозга приводит к снижению тонуса коры и вызывает сон.

Обеспечение оптимального тонуса и бодрственного состояния коры осуществляется, однако, не только восходящей активирующей ретикулярной формацией. С ней тесно связан и аппарат нисходящей ретикулярной системы, волокна которой начинаются в коре головного мозга (и прежде всего в медиальных и медиобазаль - ных отделах лобных и височных долей) и направляются как к ядрам ствола, так и к двигательным ядрам спинного мозга. Работа нисходящей ретикулярной формации очень важна тем, что с ее помощью до ядер мозгового ствола доводятся те избирательные системы возбуждения, которые первоначально возникают в коре головного мозга и являются продуктом высших форм сознательной деятельности человека с ее сложными познавательными процессами и сложными программами прижизненно формируемых действий.

Взаимодействие обеих составных частей активирующей ретикулярной системы и обеспечивает сложнейшие формы саморегуляции активных состояний мозга, меняя их под воздействием как элементарных (биологических), так и сложных (социальных по происхождению) форм стимуляции.

Решающее значение этой системы в обеспечении процессов активации (arousal) было проверено большой серией экспериментальных фактов, которые были получены выдающимися нейрофизиологами (Мэгун, Моруцци, Г. Джаспер, Д. Линдели, П. К. Анохин и др.).

Опыты Бремера показали, что перерезка нижних отделов ствола не приводит к изменению бодрствования, в то время как перерезка верхних отделов ствола вызывает сон с характерным для него появлением медленных электрических потенциалов. Как показал Д. Линдсли, в этих случаях сигналы, вызываемые сензорными раздражителями, продолжают доходить до коры, но электрические ответы коры на эти сигналы становятся лишь кратковременными и не вызывают длительных стойких изменений. Этот факт показывает, что для возникновения стойких процессов возбуждения, характеризующих состояние бодрствования, одного притока сензорных импульсов недостаточно, и необходимо поддерживающее влияние активирующей ретикулярной системы.

Обратные опыты, при которых исследователи не выключали, а раздражали восходящую ретикулярную формацию имплантированными в нее электродами, показали, что такое раздражение ретикулярной формации приводит к пробуждению животного, а дальнейшее усиление этих раздражений - к возникновению выраженных эффективных реакций животного.

Если только что приведенные опыты показывают, как влияет раздражение восходящей ретикулярной формации на поведение животного, то дальнейшие опыты, проведенные теми же авторами, дали возможность ближе познакомиться с физиологическими механизмами этих активирующих влияний.

Оказалось, что раздражение стволовой ретикулярной формации вызывало появление быстрых электрических колебаний в коре головного мозга и тех явлений «десин - хронизации», которые характерны для активного, бодрствующего состояния коры. В результате раздражения ядер восходящей ретикулярной формации в верхних отделах мозгового ствола сензорные раздражения начинали вызывать продолженные изменения в электрической активности коры, что показывало на усиливающее и фиксирующее действие ретикулярной формации на сензорные корковые узлы.

Наконец, что особенно важно, раздражение ядер восходящей активирующей ретикулярной формации вызывало повышение подвижности нервных процессов в коре головного мозга.

Так, если в обычных условиях два быстро следующих друг за другом стимула вызывали лишь одну электрическую реакцию коры, которая «не успевала» реагировать на стимулы по отдельности, то после раздражения стволовых ядер восходящей активирующей ретикулярной формации каждый из этих стимулов начинает вызывать изолированный ответ, что говорило о существенном повышении подвижности протекающих в коре процессов возбуждения.

Эти электрофизиологические явления соответствуют и фактам, полученным в психологических опытах Д. Линдсли, показавшего, что раздражение стволовых ядер восходящей активирующей ретикулярной формации существенно понижает порош чувствительности (иначе говоря, обостряет чувствительность) животного и позволяет тонкие дифференцировки (например дифференцировку изображения конуса от изображения треугольника), которые ранее были недоступны животному.

Дальнейшие исследования, проведенные некоторыми авторами (Доти, Эрпандес Пеон и др.), показали, что если перерезка путей восходящей ретикулярной формации приводит к исчезновению выработанных ранее условных рефлексов, то при раздражении ядер ретикулярной формации становится возможной выработка условных рефлексов даже на подпороговые раздражения, на которые условные рефлексы ранее не вырабатывались.

Все это отчетливо говорит об активирующем влиянии восходящей ретикулярной формации на кору головного мозга и указывает на то, что она обеспечивает оптимальное состояние мозговой коры, которое необходимо для бодрствования.

Возникает, однако, вопрос: обеспечивает ли восходящая ретикулярная формация только общее активирующее влияние на кору головного мозга или же ее активирующее влияние имеет специфические избирательные черты?

До последнего времени исследователи были склонны рассматривать активирующее влияние восходящей ретикулярной формации как модально - неспецифическое: оно одинаково сказывалось на всех сензорных системах и не обнаруживало какого - либо избирательного влияния на одну из них (зрение, слух и т. д.).

В последнее время были получены данные, указывающие на то, что активирующие влияния восходящей ретикулярной формации носят также специфический избирательный характер. Однако эта специфичность влияний активирующей ретикулярной формации другого рода: она обеспечивает не столько избирательную активацию отдельных сензорных процессов, сколько избирательную активацию отдельных биологических систем - системы пищевых, оборонительных, ориентационных рефлексов. На это указал известный советский физиолог П. К. Анохин, доказавший, что существуют отдельные части восходящей ретикулярной формации, которые активируют разные биологические системы и чувствительны к различным фармакологическим агентам.

Было показано, что уретан вызывает блокаду бодрствования и ведет к возникновению сна, но не вызывает блокаду оборонительных рефлексов на боль, и наоборот, аминазин не вызывает блокады бодрствования, но приводит к блокаде болевых оборонительных рефлексов.

Эти данные дают основания думать, что и в активирующем влиянии восходящей ретикулярной формации имеется известная избирательность, но эта избирательность соответствует всем основным биологическим системам, которые побуждают организм к активной деятельности.

Не меньший интерес для психологии представляют избирательные активирующие импульсы, обеспечивающиеся нисходящей активирующей ретикулярной формацией, волокна которой начинаются в коре головного мозга (особенно в медиальных отделах лобной и височной областей) и оттуда направляются к аппаратам верхних отделов ствола.

Есть основания предполагать, что именно эта система играет существенную роль в обеспечении избирательного активирующего влияния на те виды и составные элементы деятельности, которые формируются при ближайшем участии коры головного мозга, и что именно эти влияния имеют самое близкое отношение к физиологическим механизмам высших форм внимания.

Анатомические данные показывают, что нисходящие волокна ретикулярной формации практически начинаются во всех областях коры головного мозга, но в особенности от медиальных и медиобазальных отделов лобной доли и ее лимбической области. Их началом могут служить как нейроны глубоких отделов многих зон мозговой коры, так и особые группы нейронов, которые в большем числе находятся в лимбических зонах мозга (гипокампе) и базальных узлах (хвостатом теле). Эти нейроны существенно отличаются от тех специфических нейронов, которые реагируют на отдельные дробные свойства зрительных или звуковых раздражителей. В отличие от них, эти нейроны не реагируют на какие - либо специфические (зрительные или слуховые) раздражения: достаточно небольшого числа повторений таких раздражителей, чтобы они «привыкли» к ним и перестали отвечать на их предъявления какими - либо разрядами. Однако стоит только появиться любому изменению раздражителя, как нейроны отвечают на это изменение разрядами. Характерным является тот факт, что разряды могут Еюзникать в данной группе нейронов в одинаковой мере при изменении любых раздражителей (осязательных, зрительных, слуховых) и не только усиление, но даже ослабление раздражителей или отсутствие ожидаемого раздражителя (как например, при пропуске одного из ритмического ряда раздражителей) может вызывать активное действие этих нейронов.

В силу этих особенностей некоторые авторы, например известный канадский нейрофизиолог Г. Джаспер, предложили называть их «нейронами новизны», или «клетками внимания». Характерно, что в период, когда животное ожидает сигналы или ищет выход из лабиринта, именно в этих областях коры (где до 60 % всех нейронов относится к только что описанной группе) возникают активные разряды, которые прекращаются при устранении состояния активного ожидания.

Это говорит о том, что данные области коры и находящиеся в них неспецифические нейроны, которые реагируют на каждое изменение ситуации, являются важным аппаратом, модифицирующим состояние активности коры и регулирующим ее готовность к действию.

Если у животного наиболее существенной частью большого мозга, играющей важную роль в регуляции состояния готовности, имеют медиальные отделы лим - бической области и базальных узлов, то у человека с его высоко развитыми сложнейшими формами деятельности таким ведущим аппаратом, регулирующим состояние активности, становятся лобные отделы мозга.

В своих исследованиях известный английский физиолог Грей Уолтер показал, что каждое состояние активного ожидания (например ожидание третьего или пятого сигнала, в ответ на которые испытуемый должен был нажать кнопку) вызывает появление в лобных долях мозга особых медленных электрических колебаний, которые он назвал «волнами ожидания». Эти волны резко усиливаются, когда вероятность скорого появления ожидаемого сигнала возрастает, ослабляются, когда вероятность сигнала снижается, и полностью исчезают, когда инструкция ожидать появления сигнала отменяется.

Вторым доказательством той роли, которую играет кора лобных долей мозга в регуляции состояний активности, являются опыты, проведенные известным советским физиологом М. Н. Ливановым.

Отводя токи действия от большого числа пунктов черепа, соответствующих разным отделам коры, М. Н. Ливанов показал, что каждое интеллектуальное напряжение (например возникающее при решении сложных арифметических примеров, таких как умножение двузначного числа на двузначное) вызывает появление в лобных долях мозга большого числа синхронно работающих точек, это явление продолжается, пока напряжение остается, и исчезает после решения задачи. Особенно интересно, что число таких синхронно работающих пунктов в лобной коре особенно велико при тех патологических состояниях мозга, которые характеризуются стойким повышенным напряженным состоянием (как это, например, имеет место у больных с параноидной шизофренией), и исчезает после применения фармакологических воздействий, снимающих такое напряжение.

Все это говорит о том, что лобные доли мозга имеют решающее значение в возникновении возбуждений, отражающих изменение состояний активности человека.

Состояние повышенного «неспецифического» возбуждения в коре лимбической области животного и лобных долей человеческого мозга является источником тех импульсов, которые опускаются далее по волокнам нисходящей ретикулярной формации к верхним отделам ствола и оказывают существенное влияние на их работу.

Как показали наблюдения видных нейрофизиологов (Френча, Наута, Лагурепа и др.), раздражение отделов мозговой коры вызывает ряд изменений в электрической деятельности ядер ствола и ведет к оживлению ориентировочного рефлекса.

Так, при раздражении затылочных отделов коры головного мозга могут существенно изменяться электрические ответы с глубоких отделов зрительной системы (С. Н. Нарикашвили). Раздражение сензомоторной коры приводит либо к облегчению вызванных ответов в подкорковых отделах двигательной системы, либо к их задержке. Больше того, раздражение отдельных систем может привести к появлению ряда поведенческих реакций, входящих в состав ориентировочного рефлекса.

К подобным же явлениям приводят и сложные формы деятельности животного, вызывающие в коре очаги повышенного возбуждения, влияние которого через нисходящую ретикулярную формацию распространяется и на стволовые образования. Такие же факты были описаны известным мексиканским физиологом Э. Пеоном, который наблюдал, что активные электрические разряды ядер слухового нерва, возникающие у кошки в ответ на звуковые щелчки, исчезали, когда кошке показывали мышь или когда она ощущала запах рыбы. Эти факты показывают, что очаги возбуждения, возникающие в коре головного мозга, могут либо повышать, либо блокировать работу нижележащих образований мозгового ствола, иначе говоря, регулировать те состояния активности, которые возникают при их участии.

Аналогичное участие коры на работу нижележащих образований можно наблюдать в случаях, когда активирующее влияние коры головного мозга исчезает.

Так, разрушение (экстирпация) лимбической коры у животных приводит к отчетливым изменениям в электрической деятельности стволовых отделов мозга и к заметным нарушениям в их поведении. Разрушение коры или снижение ее влияния приводит к возникновению патологического оживления ориентировочного рефлекса и утере его избирательного характера, что в современной науке оценивается как устранение тормозящих влияний мозговой коры на механизмы подкорковой структуры ствола мозга.

Все это показывает, что восходящая и нисходящая ретикулярная система, связывающая кору головного мозга со стволовыми образованиями двусторонними связями, имеет не только общее, но и избирательное активирующее влияние. Причем если восходящая ретикулярная система, доводящая импульсы до коры головного мозга, лежит в основе биологически обусловленных форм активации (связанной как с обменными процессами и элементарными влечениями организма, так и с общим активирующим влиянием притока возбуждений), то нисходящая ретикулярная система вызывает активирующее влияние импульсов, возникающих в коре головного мозга на нижележащие образования, и тем самым обеспечивает высшие формы избирательной активации организма по отношению к конкретным задачам, возникающим перед человеком, и к сложнейшим формам его сознательной деятельности.

Из книги Сновидения, гипноз и деятельность мозга автора Ротенберг Вадим Семенович

Уровень активации и степень латерализации функций И все, что найдено во тьме наощупь - Грудь женщины и тон случайной фразы, И слово, приходящее так сразу - Все кажется вещественней и проще. И то, что мы от мрака отделим Прикосновеньем пальца или мысли, Уже к себе как будто бы

Из книги Смысл тревоги автора Мэй Ролло Р

Нейрофизиологические аспекты тревоги Я уже упоминал о том, что в большинстве трудов, посвященных нейрофизиологии тревоги, описывается работа автономной нервной системы и физические изменения, которые данная система контролирует. Авторы трудов прямо или косвенно

Из книги Игры, в которые играет "Мы". Основы психологии поведения: теория и типология автора Калинаускас Игорь Николаевич

Структура отношений активации Рассмотрим особенности этих отношений на примере типов ИМ «Дон Кихот» и «Гюго» (рис. 11). Рис. 11. Отношения активации согласно МКСУсловные обозначения: - «Дон Кихот» (1); - «Гюго» (2)Что мы видим? 1-я функция «Дон Кихота» по содержанию

Из книги Аутогенная тренировка автора Решетников Михаил Михайлович

Из книги Психология обмана [Как, почему и зачем лгут даже честные люди] автора Форд Чарльз В.

Из книги НЛП-2: поколение Next автора Дилтс Роберт

Эгозащитные механизмы - механизмы психологической защиты Механизмы эгозащиты впервые были описаны Анной Фрейд (1936–1966). Не все психологи и психиатры принимают психоаналитические концепции и идею активного бессознательного. Д. Хамлин (1985), профессор философии

Из книги Псевдонаука и паранормальные явления [Критический взгляд] автора Смит Джонатан

Нейрофизиологические механизмы полевого разума Зеркальные нейроныОдно из неврологических оснований понятия поля в третьем поколении НЛП – это зеркальные нейроны. Зеркальные нейроны обнаружили в начале 90-х годов исследователи из Пармского университета, Италия.

Из книги Пробуй – получится! [Когда вы в последний раз что-то делали впервые?] автора Годин Сет

Из книги Бросай курить! САМОкодирование по системе СОС автора Звягин Владимир Иванович

Система Форда умерла. Да здравствует система Форда! Генри Форд обнаружил, что секретом успеха на рынке является продуктивность. Стоит наладить эффективное производство автомобилей – и вы сможете продавать их гораздо дешевле. Машины по умеренной цене реализовать

Из книги Интеллектика. Как работает ваш мозг автора Шереметьев Константин

Из книги Юридическая психология [С основами общей и социальной психологии] автора Еникеев Марат Исхакович

Механизмы сна Заведует сном маленькая железа в лимбической системе, которая имеет скучное название «эпифиз». Но также она известна под более привлекательными названиями: в старинных медицинских справочниках она называется душевной железой, у даосов – Хрустальным

Из книги Психология. Люди, концепции, эксперименты автора Клейнман Пол

§ 3. Нейрофизиологические основы психики человека Функционирование организма обеспечивается нервной системой.Вся нервная система делится на центральную, периферическую и вегетативную. К центральной нервной системе относятся головной и спинной мозг. От них по всему

Из книги Блестящее выступление. Как стать успешным оратором автора Седнев Андрей

Модель активации и синтеза В 1977 году психологи Роберт Мак-Карли и Алан Хобсон создали модель активации и синтеза, согласно которой сновидения есть результат физиологических процессов мозга. По их теории, на стадии быстрого сна, характеризующейся быстрым движением

Из книги Психосоматика автора Менегетти Антонио

Техника активации Чтобы слушатели задумались о своей жизни, задайте им вопрос, стимулирующий работу мысли, например: «Какая публика была для вас самой трудной?», «Как бы изменилась ваша жизнь, если бы вы всегда получали желаемое?» или «Случалось ли вам оказаться в

Из книги Половая потребность и блудная страсть автора составитель Ника

Глава двенадцатая Нейрофизиологические корреляты психической деятельности 12.1. Вводный синтез 1. Видение, осуществленное субъектом через собственную проекцию (центральная нервная система).2. Преувеличение видения, усиленного и эмоционально окрашенного

  • 2.1. Методы изучения работы головного мозга
  • 2.1.1. Электроэнцефалография
  • 2.1.2. Вызванные потенциалы головного мозга
  • 2.1.3. Топографическое картирование электрической активности мозга
  • 2.1.4. Компьютерная томография
  • 2.1.5. Нейронная активность
  • 2.1.6. Методы воздействия на мозг
  • 2.2. Электрическая активность кожи
  • 2.3. Показатели работы сердечно-сосудистой системы
  • 2.4. Показатели активности мышечной системы
  • 2.5. Показатели активности дыхательной системы (пневмография)
  • 2.6. Реакции глаз
  • 2.7. Детектор лжи
  • 2.8. Выбор методик и показателей
  • Заключение
  • Рекомендуемая литература
  • РазделIi. Психофизиология функциональных состояний и эмоций Глава. 3. Психофизиология функциональных состояний
  • 3.1. Проблемы определения функциональных состояний
  • 3.1.1. Разные подходы к определению фс
  • 3.1.2. Нейрофизиологические механизмы регуляции бодрствования
  • Основные различия в эффектах активации ствола мозга и таламуса
  • 3.1.3. Методы диагностики функциональных состояний
  • Эффекты действия симпатической и парасимпатической систем
  • 3.2. Психофизиология сна
  • 3.2.1. Физиологические особенности сна
  • 3.2.2. Теории сна
  • 3.3. Психофизиология стресса
  • 3.3.1. Условия возникновения стресса
  • 3.3.2. Общий адаптационный синдром
  • 3.4. Боль и ее физиологические механизмы
  • 3.5. Обратная связь в регуляции функциональных состояний
  • 3.5.1. Виды искусственной обратной связи в психофизиологии
  • 3.5.2. Значение обратной связи в организации поведения
  • Глава 4. Психофизиология эмоционально-потребностной сферы
  • 4.1. Психофизиология потребностей
  • 4.1.1. Определение и классификация потребностей
  • 4.1.2. Психофизиологические механизмы возникновения потребностей
  • 4.2. Мотивация как фактор организации поведения
  • 4.3. Психофизиология эмоций
  • 4.3.1. Морфофункциональный субстрат эмоций
  • 4.3.2. Теории эмоций
  • 4.3.3. Методы изучения и диагностики эмоций
  • Рекомендуемая литература
  • РазделIii. Психофизиология познавательной сферы Глава 5. Психофизиология восприятия
  • 5.1. Кодирование информации в нервной системе
  • 5.2. Нейронные модели восприятия
  • 5.3. Электроэнцефалографические исследования восприятия
  • 5.4. Топографические аспекты восприятия
  • Различия между полушариями при зрительном восприятии (л.ИЛеушина и др., 1982)
  • Глава 6. Психофизиология внимания
  • 6.1. Ориентировочная реакция
  • 6.2. Нейрофизиологические механизмы внимания
  • 6.3. Методы изучения и диагностики внимания
  • Глава 7. Психофизиология памяти
  • 7.1. Классификация видов памяти
  • 7.1.1. Элементарные виды памяти и научения
  • 7.1.2. Специфические виды памяти
  • 7.1.3. Временная организация памяти
  • 7.1.4. Механизмы запечатления
  • 7.2. Физиологические теории памяти
  • 7.3. Биохимические исследования памяти
  • Глава 8. Психофизиология речевых процессов
  • 8.1. Неречевые формы коммуникации
  • 8.2. Речь как система сигналов
  • 8.3. Периферические системы обеспечения речи
  • 8.4. Мозговые центры речи
  • 8.5. Речь и межполушарная асимметрия
  • 8.6. Развитие речи и специализация полушарий в онтогенезе
  • 8.7. Электрофизиологические корреляты речевых процессов
  • Глава 9. Психофизиология мыслительной деятельности
  • 9.1. Электрофизиологические корреляты мышления
  • 9.1.1. Нейронные корреляты мышления
  • 9.1.2. Электроэнцефалографические корреляты мышления
  • 9.2. Психофизиологические аспекты принятия решения
  • 9.3. Психофизиологический подход к интеллекту
  • Глава 10. Сознание как психофизиологический феномен
  • 10.1. Психофизиологический подход к определению сознания
  • 10.2. Физиологические условия осознания раздражителей
  • 10.3. Мозговые центры и сознание
  • 10.4. Измененные состояния сознания
  • 10.5. Информационный подход к проблеме сознания
  • Глава 11. Психофизиология двигательной активности
  • 11.1. Строение двигательной системы
  • 11.2. Классификация движений
  • 11.3. Функциональная организация произвольного движения
  • 11.4. Электрофизиологические корреляты организации движения
  • 11.5. Комплекс потенциалов мозга, связанных с движениями
  • 11.6. Нейронная активность
  • Рекомендуемая литература
  • РазделIy. Возрастная психофизиология Глава 12. Основные понятия, представления и проблемы
  • 12.1. Общее понятие о созревании
  • 12.1.1. Критерии созревания
  • 12.1.2. Возрастная норма
  • 12.1.3. Проблема периодизации развития
  • 12.1.4. Преемственность процессов созревания
  • 12.2. Пластичность и сензитивность цнс в онтогенезе
  • 12.2.1. Эффекты обогащения и обеднения среды
  • 12.2.2. Критические и сензитивные периоды развития
  • Глава13. Основные методы и направления исследований
  • 13.1. Оценка эффектов возраста
  • 13.2. Электрофизиологические методы исследования динамики психического развития
  • 13.2.1. Изменения электроэнцефалограммы в онтогенезе
  • 13.2.2. Возрастные изменения вызванных потенциалов
  • 13.3. Реакции глаз как метод изучения познавательной активности в раннем онтогенезе
  • 13.4. Основные типы эмпирических исследований в возрастной психофизиологии
  • Глава 14. Созревание головного мозга и психическое развитие
  • 14.1. Созревание нервной системы в эмбриогензе
  • 14.2. Созревание основных блоков головного мозга в постнаталыюм онтогенезе
  • 14.2.1.Эволюционный подход к анализу созревания головного мозга
  • 14.2.2. Кортиколизация функций в онтогенезе
  • 14.2.3. Латерализация функций в онтогенезе
  • 14.3. Созревание мозга как условие психического развития
  • Глава 15. Старение организма и психическая инволюция
  • 15.1. Биологический возраст и старение
  • 15.2. Изменение организма при старении
  • 15.3. Теории старения
  • 15.4. Витаукт
  • Рекомендуемая литература
  • Цитированная литература
  • Содержание
  • 6.2. Нейрофизиологические механизмы внимания

    Изучение физиологических механизмов внимания осуществляется на разных уровнях: нейронном, структурно-функциональном и системном. Каждый из этих уровней исследования формирует свои представления о физиологических основах внимания.

    Нейроны новизны. Наиболее интересные факты, иллюстрирующие функции нейронов в механизмах внимания, связаны с обеспечением ориентировочной реакции. Еще в 60-е годы Г. Джаспер во время нейрохирургических операций выделил в таламусе человека особые нейроны – «детекторы» новизны или внимания, которые реагировали на первые предъявления стимулов.

    Позднее в нейронных сетях были выделены нервные клетки, получившие название нейронов новизны и тождества (Соколов, 1995). Нейроны новизны позволяют выделять новые сигналы. Они отличаются от других характерной особенностью: их фоновая импульсация возрастает при действии новых стимулов разной модальности. С помощью множественных связей эти нейроны соединены с детекторами отдельных зон коры головного мозга, которые образуют на нейронах новизны пластичные возбуждающие синапсы. Таким образом, при действии новых стимулов импульсная активность нейронов новизны возрастает. По мере повторения стимула и в зависимости от силы возбуждения ответ нейрона новизны избирательно подавляется, так что дополнительная активация в нем исчезает и сохраняется лишь фоновая активность.

    Нейрон тождества также обладает фоновой активностью. К этим нейронам через пластичные синапсы поступают импульсы от детекторов разных модальностей. Но в отличие от нейронов новизны, в нейронах тождества их связь с детекторами осуществляется через тормозные синапсы. При действии нового раздражителя фоновая активность в нейронах тождества подавляется, а при действии привычных раздражителей, напротив, активизируется.

    Итак, новый стимул возбуждает нейроны новизны и тормозит нейроны тождества, таким образом, новый раздражитель стимулирует активирующую систему мозга и подавляет синхронизирующую (тормозную) систему. Привычный стимул действует прямо противоположным образом – усиливая работу тормозной системы, не влияет на активирующую.

    Особенности импульсной активности нейронов человека при выполнении психологических проб, требующих мобилизации произвольного внимания, описаны в работах Н.П. Бехтеревой и ее сотрудников. При этом в передних отделах таламуса и ряде других структур ближайшей подкорки были зафиксированы стремительные возникающие вспышки импульсной активности, по частоте в 2 – 3 раза превышающие уровень фона. Характерно, что описанные изменения в импульсной активности нейронов сохранялись на протяжении выполнения всего теста, и только по его завершении уровень активности этих нейронов возвращался к исходному.

    В целом, в этих исследованиях установлено, что различные формы познавательной деятельности человека, сопровождающиеся мобилизацией произвольного внимания, характеризуются определенным типом активности нейронов, четко сопоставимым с динамикой произвольного внимания.

    Структурно-функциональный уровень организации внимания. Одним из наиболее выдающихся достижений нейрофизиологии в XX веке явилось открытие и систематическое изучение функций неспецифической системы мозга, которое началось с появления в 1949 г. книги Г. Моруцци и Г.Мэгуна «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ».

    Ретикулярная формация наряду с лимбической системой образуют блок модулирующих систем мозга, основной функцией которых является регуляция функциональных состояний организма (см. главу З.1.З.). Первоначально к неспецифической системе мозга относили в основном лишь сетевидные образования ствола мозга и их главной задачей считали диффузную генерализованную активацию коры больших полушарий. По современным представлениям, восходящая неспецифическая активирующая система простирается от продолговатого мозга до зрительного бугра (таламуса).

    Таламус, входящий в состав промежуточного мозга, имеет ядерную структуру. Он состоит из специфических и неспецифических ядер. Специфические ядра обрабатывают всю поступающую в организм сенсорную информацию, поэтому таламус образно называют коллектором сенсорной информации. Специфические ядра таламуса связаны, главным образом, с первичными проекционными зонами анализаторов. Неспецифические ядра направляют свои восходящие пути в ассоциативные зоны коры больших полушарий.

    В 1955 г. Г.Джаспером было сформулировано представление о диффузно-проекционной таламической системе. Опираясь на целый ряд фактов, он утверждал, что диффузная проекционная таламическая система (неспецифический таламус) в определенных пределах может управлять состоянием коры, оказывая на нее как возбуждающее, так и тормозное влияния. В экспериментах на животных было показано, что при раздражении неспецифического таламуса в коре головного мозга возникает реакция активации. Эту реакцию легко наблюдать при регистрации энцефалограммы, однако активация коры при раздражении неспецифического таламуса имеет рад отличий от активации, возникающей при раздражении ретикулярной формации ствола мозга (см. главу 3.2).

    По современным представлениям, переключение активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламической системы означает переход от генерализованной активации коры к локальной:

    1) первая отвечает за глобальные сдвиги общего уровня бодрствования;

    2) вторая отвечает за избирательное сосредоточение внимания.

    Ретикулярная формация ствола мозга и неспецифический таламус тесно связаны с корой больших полушарий. Особое место в системе этих связей занимают фронтальные зоны коры. Предполагается, что возбуждение ретикулярной формации ствола мозга и неспецифического таламуса по прямым восходящим путям распространяется на передние отделы коры, При достижении определенного уровня возбуждения фронтальных зон по нисходящим путям, идущим в ретикулярную формацию и таламус. осуществляется тормозное влияние. Фактически здесь имеет место контур саморегуляции: ретикулярная формация изначально активизирует фронтальную кору, а та в свою очередь тормозит (снижает) активность ретикулярной формации. Поскольку все эти влияния носят градуальный характер, т.е. изменяются постепенно, то с помощью двухсторонних связей фронтальные зоны коры могут обеспечивать именно тот уровень возбуждения, который требуется в каждом конкретном случае.

    Таким образом, фронтальная кора – важнейший регулятор состояния бодрствования в целом и внимания как избирательного процесса. Она модулирует в нужном направлении активность стволовой и таламической систем. Благодаря этому, можно говорить о таком явлении как управляемая корковая активация (Дубровинская, 1985).

    Система внимания в мозге человека. Изложенная выше схема не исчерпывает всех представлений о мозговом обеспечении внимания. Она характеризует общие принципы нейрофизиологической организации внимания и адресуется, главным образом, к так называемому модально-неспецифическому вниманию. Более детальное изучение позволяет специализировать внимание, выделив его модально-специфические виды. Как относительно самостоятельные можно описать следующие виды внимания: сенсорное (зрительное, слуховое, тактильное), двигательное, эмоциональное и интеллектуальное. Клиника очаговых поражений показывает, что эти виды внимания могут страдать независимо друг от друга и в их обеспечении принимают участие разные отделы мозга. В поддержании модально-специфических видов внимания принимают активное участие зоны коры, непосредственно связанные с обеспечением соответствующих психических функций (Хомская, 1987).

    Наряду с этим, с помощью метода регистрации локального мозгового кровотока установлено, что правая фронтальная область коры вносит больший вклад в обеспечение функций селективного внимания, чем левая. Этим же методом установлено, что при восприятии речевых стимулов возрастает активация преимущественно в височно-теменных отделах левого полушария, причем этот эффект не зависит от того, в какое ухо подается стимул. В то же время при прослушивании музыки кровоток усиливается в правом полушарии.

    Позитронно-эмиссионная томография открыла прямой доступ к изучению топографических аспектов функционирования мозговой системы внимания. Показано, что при привлечении внимания к слуховым или зрительным стимулам радикально меняется паттерн возбуждения мозговых структур. Причем в зависимости от того, в какой сенсорной модальности активируется внимание, распределение по коре активированных участков оказывается разным. При зрительной направленности внимания возбуждение преимущественно сконцентрировано в экстрастриарной коре, а при внимании к слуховым стимулам возбуждены височные области, фронтальная кора и ряд подкорковых образований.

    Исследования с помощью ПЭТ-томографии показали также, что вербальная стимуляция вызывает более выраженное потребление глюкозы в левом полушарии по сравнению с правым (у праворуких), а прослушивание музыкальных произведений активизирует преимущественно правое полушарие, особенно его переднефронтальные, теменные и передневисочные зоны.

    Известный американский исследователь М. Познер (Posner, 1988) утверждает, что в мозге человека существует самостоятельная система внимания, которая анатомически изолирована от систем обработки поступающей информации. Внимание поддерживается за счет работы разных анатомических зон, образующих сетевую структуру, и эти зоны выполняют разные функции, которые можно описать в когнитивных терминах. Причем выделяется ряд функциональных подсистем внимания. Они обеспечивают три главные функции: ориентацию на сенсорные события, обнаружение сигнала для фокальной (сознательной обработки) и поддержание бдительности или бодрствующего состояния. В обеспечении первой функции существенную роль играет задняя теменная область и некоторые ядра таламуса, второй – латеральные и медиальные отделы фронтальной коры. Поддержание бдительности обеспечивается за счет деятельности правого полушария.

    Помимо этого, немало клинических и экспериментальных данных свидетельствует о разном вкладе отдельных зон коры и полушарий в обеспечение не только восприятия, но и избирательного внимания. Они позволяют считать, что правое полушарие в основном обеспечивает общую мобилизационную готовность человека, поддерживает необходимый уровень бодрствования и сравнительно мало связано с особенностями конкретной деятельности. Левое в большей степени отвечает за специализированную организацию внимания в соответствии с особенностями задачи.

    Loading...Loading...