Рисунок мембраны клетки. Функции клеточной мембраны

Клеточная мембрана — молекулярная структура, которая состоит из липидов и белков. Главные её свойства и функции:

  • отделение содержимого любой клетки от внешней среды, гарантируя её целостность;
  • управление и налаживание обменом между средой и клеткой;
  • внутриклеточные мембраны разбивают клетку на специальные отсеки: органеллы или компартменты.

Слово «мембрана» на латыни означает «пленка». Если говорить о клеточной мембране, то это совокупность двух пленок, которые обладают различными свойствами.

Биологическая мембрана включает в себя три вида белков:

  1. Периферические – расположены на поверхности пленки;
  2. Интегральные – целиком пронизывают мембрану;
  3. Полуинтегральные – одним концом проникают внутрь билипидного слоя.

Какие функции выполняет клеточная мембрана

1. Клеточная стенка — прочная оболочка клетки, которая находится снаружи от цитоплазматической мембраны. Она выполняет защитные, транспортные и структурные функции. Присутствует у многих растений, бактерий, грибов и архей.

2. Обеспечивает барьерную функцию, то есть избирательный, регулируемый, активный и пассивный обмен веществ с внешней средой.

3. Способна передавать и сохранять информации, а также принимает участие в процессе размножения.

4. Выполняет транспортную функцию, которая может через мембрану транспортировать вещества в клетку и из клетки.

5. Клеточная мембрана имеет одностороннюю проводимость. Благодаря этому, молекулы воды могут без задержек проходить через клеточную мембрану, а молекулы прочих веществ проникают выборочно.

6. С помощью клеточной мембраны происходит получение воды, кислорода и питательных веществ, а через неё удаляются продукты клеточного обмена.

7. Выполняет клеточный обмен через мембраны, и может исполнять их с помощью 3 главных типов реакций: пиноцитоз, фагоцитоз, экзоцитоз.

8. Мембрана обеспечивает специфику межклеточных контактов.

9. В мембране присутствуют многочисленные рецепторы, которые способны воспринимать химические сигналы — медиаторы, гормоны и множество других биологических активных веществ. Так она в силах изменить метаболическую активность клетки.

10. Основные свойства и функции клеточной мембраны:

  • Матричная
  • Барьерная
  • Транспортная
  • Энергетическая
  • Механическая
  • Ферментативная
  • Рецепторная
  • Защитная
  • Маркировочная
  • Биопотенциальная

Какую функцию выполняет в клетке плазматическая мембрана?

  1. Отграничивает содержимое клетки;
  2. Осуществляет поступление веществ в клетку;
  3. Обеспечивает удаление ряда веществ из клетки.

Структура мембраны клетки

Клеточные мембраны включают липиды 3 классов:

  • Гликолипиды;
  • Фосфолипиды;
  • Холестерол.

В основном мембрана клетки состоит из белков и липидов, и имеет толщину не более 11 нм. От 40 до 90% всех липидов составляют фосфолипиды. Также важно отметить гликолипиды, которые являются одним из основных компонентов мембраны.

Структура клеточной мембраны трехслойна. В центре располагается однородный жидкий билипидный слой, а белки закрывают его с двух сторон (как мозаику), отчасти проникая в толщу. Также белки необходимы для мембраны, чтобы пропускать внутрь клеток и транспортировать из них наружу особые вещества, которые не могут проникнуть через жировой слой. Например, ионы натрия и калия.

  • Это интересно —

Строение клетки — видео

Клеточная мембрана, которую также называют плазмалемма, цитолемма или же плазматическая мембрана - является молекулярной структурой, эластичной по своей природе, которая состоит из различных белков и липидов. Она отделяет содержание любой клетки от внешней среды, тем самым регулируя ее защитные свойства, а также обеспечивает обмен между внешней средой и непосредственно внутренним содержимым клетки.

Плазматическая мембрана

Плазмалемма - это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Основные сведения

Состав плазмалеммы - это фосфолипиды или же, как их еще называют, сложные липиды. Фосфолипиды имеют несколько частей: хвост и головку. Специалисты называют гидрофобные и гидрофильные части: в зависимости от строения животной или растительной клетки. Участки, которые именуются головкой - обращены внутрь клетки, а хвосты - наружу. Плазмалеммы по структуре являются инвариабельными и очень похожи у различных организмов; чаще всего исключение могут составить археи, у которых перегородки состоят из различных спиртов и глицерина.

Толщина плазмалеммы приблизительно 10 нм .

Существуют перегородки, которые находятся на внешней стороне или же снаружи части, вплотную прилегающей к мембране - их называют поверхностными. Некоторые виды белка могут быть своеобразными контактными точками для клеточной мембраны и оболочки. Внутри клетки находится цитоскелет и наружная стенка. Определенные виды интегрального белка могут быть использованы как каналы в ионных транспортных рецепторах (параллельно с нервными окончаниями).

Если использовать электронный микроскоп, то можно получить данные, на основе которых можно построить схему строения всех частей клетки, а также основных составляющих и оболочек. Верхний аппарат будет состоять из трех субсистем:

  • комплексное надмембранное включение;
  • опорно-сократительный аппарат цитоплазмы, который будет иметь субмембранную часть.

К данному аппарату можно отнести цитоскелет клетки. Цитоплазма с органоидами и ядром называется - ядерный аппарат. Цитоплазматическая или, по-другому, плазматическая клеточная мембрана, находится под клеточной оболочкой.

Слово «мембрана» произошло от латинского слова membrum, которое можно перевести как «кожа» или «оболочка». Термин предложили более 200 лет назад и им чаще называли края клетки, но в период, когда началось использование различного электронного оборудования, установили, что плазматические цитолеммы составляют множество различных элементов оболочки.

Элементы чаще всего структурные, такие как:

  • митохондрии;
  • лизосомы;
  • пластиды;
  • перегородки.

Одна из первых гипотез относительно молекулярного состава плазмалеммы была выдвинута в 1940 году научным институтом Великобритании. Уже в 1960 году Уильям Робертс предложил миру гипотезу «Об элементарной мембране». Она предполагала, что все плазмалеммы клетки состоят из определенных частей, по сути, являются сформированными по общему принципу для всех царств организмов.

В начале семидесятых годов XX века было открыто множество данных, на основании которых в 1972 году ученые из Австралии предложили новую мозаично-жидкостную модель строения клеток.

Строение плазматической мембраны

Модель 1972-го года является общепризнанной и по сей день. То есть в современной науке, различные ученые, работающие с оболочкой, опираются на теоретический труд «Строение биологической мембраны жидкостно-мозаичной модели».

Молекулы белков связаны с липидным бислоем и пронизывают всю мембрану полностью - интегральные белки (одно из общепринятых названий - это трансмембранные белки).

Оболочка в составе имеет различные углеводные компоненты, которые будут выглядеть как полисахаридная или сахаридная цепь. Цепь, в свою очередь, будет соединена липидами и белком. Соединенные молекулами белка цепи называются гликопротеинами, а молекулами липидов - гликозидами. Углеводы находятся на внешней стороне мембраны и выполняют функции рецепторов в клетках животного происхождения.

Гликопротеин - представляют собой комплекс надмембранных функций. Его еще называют гликокаликс (от греческих слов глик и каликс, что в переводе означает "сладкий" и "чашка"). Комплекс способствует адгезии клеток.

Функции плазматической мембраны

Барьерная

Помогает отделить внутренние составляющие клеточной массы от тех веществ, которые находятся извне. Предохраняет организм от попадания различных веществ, которые будут являться для него чужеродными, и помогает поддерживать внутриклеточный баланс.

Транспортная

Клетка имеет свой «пассивный транспорт» и использует его для уменьшения расхода энергии. Транспортная функция работает в следующих процессах:

  • эндоцитоз;
  • экзоцитоз;
  • натриевый и калиевый обмен.

На внешней стороне мембраны находится рецептор, на участке которого происходит смешивание гормонов и различных регуляторных молекул.

Пассивный транспорт - процесс, при котором вещество проходит через мембрану, при этом энергия не затрачивается. Иными словами, вещество доставляется из области клетки с высокой концентрацией, в ту сторону, где концентрация будет более низкая.

Существует два вида:

  • Простая диффузия - присуща маленьким нейтральным молекулам H2O, CO2 и О2 и некоторыми гидрофобным органическим веществам с низкой молекулярной массой и соответственно без проблем проходят через фосфолипиды мембраны. Эти молекулы могут проникать через мембрану вплоть до того времени, пока градиент концентрации будет стабилен и неизменен.
  • Облегченная диффузия - характерна для различных молекул гидрофильного типа. Они также могут проходить через мембрану согласно градиенту концентрации. Однако, процесс будет осуществляться с помощью различных белков, которые будут образовывать специфические каналы ионных соединений в мембране.

Активный транспорт - это перемещение различных составляющих через стенку мембраны в противовес градиенту. Такое перенесение требует значительных затрат энергетических ресурсов в клетке. Чаще всего именно активный транспорт является основным источником потребления энергии.

Выделяют несколько разновидностей активного транспорта при участии белков-переносчиков:

  • Натриево-калиевый насос. Получение клеткой необходимых минералов и микроэлементов.
  • Эндоцитоз - процесс, при котором происходит захват клеткой твердых частиц (фагоцитоз) или же различных капель любой жидкости (пиноцитоз).
  • Экзоцитоз - процесс, при котором происходит выделение из клетки определенных частиц во внешнюю окружающую среду. Процесс является противовесом эндоцитоза.

Термин "эндоцитоз" произошел от греческих слов "энда" (изнутри) и "кетоз" (чаша, вместилище). Процесс характеризует захват внешнего состава клеткой и осуществляется при производстве мембранных пузырьков. Этот термин был предложен в 1965 году профессором цитологии из Бельгии Кристианом Бэйлсом, он изучал поглощение различных веществ клетками млекопитающих, а также фагоцитоз и пиноцитоз.

Фагоцитоз

Происходит при захвате клеткой определенных твердых частиц или же живых клеток. А пиноцитоз - это процесс, при котором капли жидкости захватываются клеткой. Фагоцитоз (от греческих слов "пожиратель" и "вместилище") - процесс при котором очень маленькие объекты живой природы захватываются и поглощаются, так же как и твердые части различных одноклеточных организмов.

Открытие процесса принадлежит физиологу из России - Вячеславу Ивановичу Мечникову, который определил непосредственно процесс, при этом он проводил различные испытания с морскими звездами и крошечными дафниями.

В основе питания одноклеточных гетеротрофных организмов лежит их способность переваривать, а также захватывать различные частицы.

Мечников описал алгоритм поглощения бактерии амебой и общий принцип фагоцитоза:

  • адгезия - прилипание бактерий к мембране клетки;
  • поглощение;
  • образование пузырька с бактериальной клеткой;
  • откупоривание пузырька.

Исходя из этого, процесс фагоцитоза состоит из таких этапов:

  1. Поглощаемая частица крепится к мембране.
  2. Окружение поглощаемой частицы мембраной.
  3. Образование мембранного пузырька (фагосома).
  4. Открепление мембранного пузырька (фагосомы) во внутреннюю часть клетки.
  5. Объединение фагосомы и лизосомы (переваривание), а также внутреннее перемещение частиц.

Можно наблюдать полное или частичное переваривание.

В случае частичного переваривания чаще всего образуется остаточное тельце, которое будет находиться внутри клетки некоторое время. Те остатки, которые будут непереварены, изымаются (эвакуируются) из клетки путем экзоцитоза. В процессе эволюции эта функция предрасположенности к фагоцитозу постепенно отделилась и перешла от различных одноклеточных к специализированным клеткам (таким как пищеварительная у кишечнополостных и губок), а после к особым клеткам у млекопитающих и человека.

К фагоцитозу предрасположены лимфоциты и лейкоциты в крови. Сам процесс фагоцитоза нуждается в больших затратах энергии и напрямую объединен с активностью внешней клеточной мембраны и лизосомы, при которых находятся пищеварительные ферменты.

Пиноцитоз

Пиноцитоз - это захват поверхностью клетки какой-либо жидкости, в которой находятся различные вещества. Открытие явления пиноцитоза принадлежит ученому Фицджеральду Льюису . Произошло это событие в 1932 году.

Пиноцитоз - это один из основных механизмов, при котором в клетку попадают высокомолекулярные соединения, например, различные гликопротеины или же растворимые белки. Пиноцитозная активность, в свою очередь, невозможна без физиологического состояния клетки и зависит от ее состава и состава окружающей среды. Самый активный пиноцитоз мы можем наблюдать у амебы.

У человека пиноцитоз наблюдается в клетках кишечника, в сосудах, почечных канальцах, а также в растущих ооцитах. Для того чтобы изобразить процесс пиноцитоза, которой будет осуществляться с помощью лейкоцитов человека, можно сделать выпячивание плазматической мембраны. При этом части будут отшнуровываться и отделяться. Процесс пиноцитоза нуждается в затрате энергии.

Этапы процесса пиноцитоза:

  1. На наружной клеточной плазмалемме появляются тонкие наросты, которые окружают капли жидкости.
  2. Этот участок внешней оболочки становится тоньше.
  3. Образование мембранного пузырька.
  4. Стенка прорывается (проваливается).
  5. Пузырек перемещается в цитоплазме и может слиться с различными пузырьками и органоидами.

Экзоцитоз

Термин произошел от греческих слов "экзо" - наружный, внешний и "цитоз" - сосуд, чаша. Процесс заключается в выделении клеточной частью определенных частиц во внешнюю среду. Процесс экзоцитоза является противоположным пиноцитозу.

В процессе экоцитоза из клетки выходят пузырьки внутриклеточной жидкости и переходят на внешнюю мембрану клетки. Содержимое внутри пузырьков может выделяться наружу, а мембрана клетки сливается с оболочкой пузырьков. Таким образом, большинство макромолекулярных соединений будет происходить именно этим способом.

Экзоцитоз выполняет ряд задач:

  • доставка молекул на внешнюю клеточную мембрану;
  • транспортировка по всей клетке веществ, которые будут нужны для роста и увеличения площади мембраны, например, определенных белков или же фосфолипидов;
  • освобождение или соединение различных частей;
  • выведение вредных и токсических продуктов, которые появляются при метаболизме, например, соляной кислоты секретируемой клетками слизистой оболочки желудка;
  • транспортировка пепсиногена, а также сигнальных молекул, гормонов или нейромедиаторов.

Специфические функции биологических мембран :

  • генерация импульса, происходящего на нервном уровне, внутри мембраны нейрона;
  • синтез полипептидов, а также липидов и углеводов шероховатой и гладкой сети эндоплазматической сетки;
  • изменение световой энергии и ее преобразование в энергию химическую.

Видео

Из нашего видео вы узнаете много интересного и полезного о строении клетки.

Клетка - это не только жидкость, ферменты и другие вещества, но и высокоорганизованные структуры, называемые внутриклеточными органеллами. Органеллы для клетки не менее важны, чем ее химические составляющие. Так, при отсутствии таких органелл, как митохондрии, запас энергии, извлеченной из питательных веществ, сразу же уменьшится на 95%.

Большинство органелл в клетке покрыты мембранами , состоящими в основном из липидов и белков. Различают мембраны клеток, эндоплазматического ретикулума, митохондрий, лизосом, аппарата Гольджи.

Липиды нерастворимы в воде, поэтому в клетке они создают барьер, препятствующий движению воды и водорастворимых веществ из одного компартмента в другой. Молекулы белка, однако, делают мембрану проницаемой для разных веществ с помощью специализированных структур, называемых порами. Множество других мембранных белков являются ферментами, катализирующими многочисленные химические реакции, которые будут рассмотрены в следующих главах.

Клеточная (или плазматическая) мембрана представляет собой тонкую, гибкую и эластичную структуру толщиной всего 7,5-10 нм. Она состоит в основном из белков и липидов. Примерное соотношение ее компонентов таково: белки - 55%, фосфолипиды - 25%, холестерол - 13%, другие липиды - 4%, углеводы - 3%.

Липидный слой клеточной мембраны препятавует проникновению воды. Основу мембраны составляет липидный бислой - тонкая липидная пленка, состоящая из двух монослоев и полностью покрывающая клетку. По всей мембране располагаются белки в виде крупных глобул.

Схематичное изображение клеточной мембраны, отражающее ее основные элементы
- фосфолипидный бислой и большое количество молекул белка, выступающих над поверхностью мембраны.
Углеводные цепочки прикреплены к белкам на наружной поверхности
и к дополнительным молекулам белка внутри клетки (на рисунке это не показано).

Липидный бислой состоит главным образом из молекул фосфолипидов. Один конец такой молекулы является гидрофильным, т.е. растворимым в воде (на нем расположена фосфатная группа), другой - гидрофобным, т.е. растворимым только в жирах (на нем находится жирная кислота).

Благодаря тому, что гидрофобная часть молекулы фосфолипида отталкивает воду, но притягивается к подобным частям таких же молекул, фосфолипиды имеют природное свойство прикрепляться друг к другу в толще мембраны, как показано на рис. 2-3. Гидрофильная часть с фосфатной группой образует две мембранные поверхности: наружную, которая контактирует с внеклеточной жидкостью, и внутреннюю, которая контактирует с внутриклеточной жидкостью.

Середина липидного слоя непроницаема для ионов и водных растворов глюкозы и мочевины. Жирорастворимые вещества, включая кислород, углекислый газ, алкоголь, напротив, легко проникают через эту область мембраны.

Молекулы холестерола, входящего в состав мембраны, по природе также относятся к липидам, поскольку их стероидная группировка обладает высокой растворимостью в жирах. Эти молекулы как бы растворены в липидном бислое. Их главное назначение - регуляция проницаемости (или непроницаемости) мембран для водорастворимых компонентов жидких сред организма. Кроме того, холестерол - основной регулятор вязкости мембраны.

Белки клеточных мембран . На рисунке в липидном бислое видны глобулярные частицы - это мембранные белки, большинство которых являются гликопротеинами. Различают два типа мембранных белков: (1) интегральные, которые пронизывают мембрану насквозь; (2) периферические, которые выступают только над одной ее поверхностью, не достигая другой.

Многие интегральные белки формируют каналы (или поры), через которые во внутри- и внеклеточную жидкость могут диффундировать вода и водорастворимые вещества, особенно ионы. Благодаря избирательности действия каналов одни вещества диффундируют лучше других.

Другие интегральные белки функционируют как белки-переносчики, осуществляя транспорт веществ, для которых липидный бислой непроницаем. Иногда белки-переносчики действуют в направлении, противоположном диффузии, такой транспорт называют активным. Некоторые интегральные белки являются ферментами.

Интегральные белки мембраны могут служить также рецепторами для водорастворимых веществ, включая пептидные гормоны, поскольку мембрана для них непроницаема. Взаимодействие белка-рецептора с определенным лигандом приводит к конформационным изменениям молекулы белка, что, в свою очередь, стимулирует ферментативную активность внутриклеточного сегмента белковой молекулы или передачу сигнала от рецептора внутрь клетки с помощью вторичного посредника. Таким образом, интегральные белки, встроенные в клеточную мембрану, вовлекают ее в процесс передачи информации о внешней среде внутрь клетки.

Молекулы периферических мембранных белков часто бывают связаны с интегральными белками. Большинство периферических белков являются ферментами или играют роль диспетчера транспорта веществ через мембранные поры.

Клеточная мембрана (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки компартменты или органеллы, в которых поддерживаются определённые условия среды.

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды - триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот - гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки - наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2)полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс - гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны - примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

1. отделение клеточного содержимого от внешней среды,

2. регуляция обмена веществ между клеткой и средой,

3. деление клетки на компартменты («отсеки»),

4. место локализации «ферментативных конвейеров»,

5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),

6. распознавание сигналов.

Важнейшее свойство мембран - избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт - процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт - процесс прохождения веществ, идущий с затратами энергии.

Природа создала множество организмов и клеток, но, несмотря на это, строение и большая часть функций биологических мембран одинаковы, что позволяет рассматривать их структуру и изучать их ключевые свойства без привязанности к конкретному виду клеток.

Что такое мембрана?

Мембраны - это защитный элемент, который является неотъемлемой составляющей клетки любого живого организма.

Структурной и функциональной единицей всех живых организмов на планете является клетка. Жизнедеятельность ее неразрывно связана с окружающей средой, с которой она обменивается энергией, информацией, веществом. Так, питательная энергия, необходимая для функционирования клетки, поступает извне и тратится на осуществление ею различных функций.

Структура простейшей единицы строения живого организма: мембрана органеллы, разнообразные включения. Она окружена мембраной, внутри которой располагается ядро и все органеллы. Это митохондрии, лизосомы, рибосомы, эндоплазматический ретикулум. Каждый структурный элемент имеет свою мембрану.

Роль в жизнедеятельности клетки

Биологическая мембрана играет кульминационную роль в строении и функционировании элементарной живой системы. Только клетка, окруженная защитной оболочкой, по праву может называться организмом. Такой процесс, как обмен веществ, также осуществляется благодаря наличию мембраны. Если структурная целостность ее нарушена, это приводит к изменению функционального состояния организма в целом.

Клеточная мембрана и ее функции

Она отделяет цитоплазму клетки от внешней среды или от оболочки. Мембрана клетки обеспечивает должное выполнение специфических функций, специфику межклеточных контактов и иммунных проявлений, поддерживает трансмембранную разницу электрического потенциала. В ней имеются рецепторы, способные воспринимать химические сигналы - гормоны, медиаторы и другие биологические активные компоненты. Эти рецепторы наделяют ее еще одной способностью - изменять метаболическую активность клетки.

Функции мембраны:

1. Активный перенос веществ.

2. Пассивный перенос веществ:

2.1. Диффузия простая.

2.2. Перенос через поры.

2.3. Транспорт, осуществляемый за счет диффузии переносчика вместе с мембранным веществом или посредством передачи по эстафете вещества по молекулярной цепи переносчика.

3. Перенос неэлектролитов благодаря простой и облегченной диффузии.

Строение мембраны клетки

Составляющие мембраны клетки - липиды и белки.

Липиды: фосфолипиды, фосфатидилэтаноламин, сфингомиелин, фосфатидилинозит и фосфатидилсерин, гликолипиды. Доля липидов составляет 40-90 %.

Белки: периферические, интегральные (гликопротеины), спектрин, актин, цитоскелет.

Основной структурный элемент - двойной слой фосфолипидных молекул.

Кровельная мембрана: определение и типология

Немного статистики. На территории Российской Федерации мембрана в качестве кровельного материала используется не так уж и давно. Удельный вес мембранных кровель из общего числа мягких перекрытий крыш составляет всего 1,5 %. Более широкое распространение в России получили битумные и мастичные кровли. А вот в Западной Европе на долю мембранных кровель приходится 87 %. Разница ощутимая.

Как правило, мембрана в роли основного материала при перекрытии крыши идеально подходит для плоских кровель. Для имеющих большой уклон она подходит в меньшей степени.

Объемы производства и реализации мембранных кровель на отечественном рынке имеют положительную тенденцию роста. Почему? Причины более чем ясны:

  • Срок эксплуатации составляет около 60 лет. Представьте себе, только гарантийный срок использования, который устанавливается производителем, достигает 20 лет.
  • Легкость в монтаже. Для сравнения: установка битумной кровли занимает в 1,5 раза больше времени, нежели монтаж мембранного перекрытия.
  • Простота в обслуживании и проведении ремонтных работ.

Толщина кровельных мембран может составлять 0,8-2 мм, а средний показатель веса одного метра квадратного равен 1,3 кг.

Свойства кровельных мембран:

  • эластичность;
  • прочность;
  • устойчивость к воздействию ультрафиолетовых лучей и иных сред-агрессоров;
  • морозоустойчивость;
  • огнеупорность.

Мембрана кровельная бывает трех типов. Главный классификационный признак - вид полимерного материала, составляющего основание полотна. Итак, кровельные мембраны бывают:

  • принадлежащие группе ЭПДМ, изготовлены на основе полимеризированного этилен-пропилен-диен-мономера, а проще говоря, Преимущества: высокая прочность, эластичность, водонепроницаемость, экологичность, низкая стоимость. Недостатки: клеевая технология соединения полотен посредством использования специальной ленты, низкие показатели прочности соединений. Сфера применения: используется как гидроизоляционный материал для туннельных перекрытий, водных источников, хранилищ отходов, искусственных и природных водоемов и т. д.
  • ПВХ-мембраны. Это оболочки, при производстве которых в качестве основного материала используется поливинилхлорид. Преимущества: устойчивость к ультрафиолету, огнеупорность, обширная цветовая гамма мембранных полотен. Недостатки: низкие показатели устойчивости к битумным материалам, маслам, растворителям; выделяет в атмосферу вредные вещества; цвет полотна со временем тускнеет.
  • ТПО. Изготавливаются из термопластичных олефинов. Могут быть армированными и неармированными. Первые оснащаются сеткой из полиэстера или стекловолоконной тканью. Преимущества: экологичность, долговечность, высокая эластичность, температуростойкость (как при высоких, так и при низких температурах), сварные соединения швов полотен. Недостатки: высокая ценовая категория, отсутствие производителей на отечественном рынке.

Мембрана профилированная: характеристика, функции и преимущества

Профилированные мембраны - это инновация на строительном рынке. Такая мембрана эксплуатируется в качестве гидроизоляционного материала.

Вещество, используемое при изготовлении, - полиэтилен. Последний бывает двух типов: полиэтилен высокого давления (ПВД) и полиэтилен низкого давления (ПНД).

Техническая характеристика мембраны из ПВД и ПНД

Показатель

Прочность при разрыве (МРа)

Удлинение при растяжении (%)

Плотность (кг/куб. м)

Прочность при сжатии (МРа)

Ударная вязкость (с надрезом) (КДж/кв. м)

Модуль упругости на изгиб (МРа)

Твёрдость (МРа)

Рабочий температурный режим (˚С)

от -60 до +80

от -60 до +80

Суточная норма водопоглощения (%)

Профилированная мембрана из полиэтилена высокого давления имеет особую поверхность - пустотелые пупырышки. Высота этих образований может колебаться от 7 до 20 мм. Внутренняя поверхность мембраны ровная. Это дает возможность беспроблемного сгибания стройматериала.

Изменение формы отдельных участков мембраны исключено, поскольку давление по всей ее площади распределяется равномерно благодаря наличию все тех же выступов. Геомембрана может использоваться в качестве вентиляционной изоляции. В таком случае обеспечивается свободный тепловой обмен внутри здания.

Преимущества профилированных мембран:

  • повышенная прочность;
  • теплоустойчивость;
  • устойчивость химического и биологического влияния;
  • длительный срок эксплуатации (более 50 лет);
  • простота в установке и обслуживании;
  • доступная стоимость.

Профилированные мембраны бывают трех видов:

  • с однослойным полотном;
  • с двухслойным полотном = геотекстиль + дренажная мембрана;
  • с трехслойным полотном = скользкая поверхность + геотекстиль + дренажная мембрана.

Однослойная профилированная мембрана применяется для защиты основной гидроизоляции, монтажа и демонтажа подготовки бетоном стен с повышенной влажностью. Двухслойную защитную используют во время оснащения Состоящую из трех слоев применяют на грунте, который поддается морозным пучениям, и грунтовой почве, находящейся глубоко.

Сферы использования дренажных мембран

Профилированная мембрана находит свое применение в следующих областях:

  1. Основная гидроизоляция фундамента. Обеспечивает надежную защиту от разрушительного влияния грунтовых вод, корневых систем растений, просадки грунта, повреждений механического типа.
  2. Стеновой дренаж фундамента. Нейтрализует воздействие грунтовых вод, атмосферных осадков посредством переправления их в дренажные системы.
  3. Горизонтальный типа - защита от деформации благодаря структурным особенностям.
  4. Аналог подготовки бетоном. Эксплуатируется в случае проведения строительных работ по возведению зданий в зоне низкого залегания грунтовых вод, в тех случаях, когда используется горизонтальная гидроизоляция с целью защиты от капиллярной влаги. Также в функции мембраны профилированной входит непропускание цементного молока в грунт.
  5. Вентиляция стеновых поверхностей повышенного уровня влажности. Может устанавливаться как на внутренней, так и на внешней стороне помещения. В первом случае активизируется воздушная циркуляция, а во втором обеспечивается оптимальная влажность и температура.
  6. Используемая инверсионная кровля.

Супердиффузионная мембрана

Мембрана супердиффузионная является материалом нового поколения, главное предназначение которого - защита элементов кровельной конструкции от ветровых явлений, осадков, пара.

Производство защитного материала основано на использовании нетканых веществ, плотных волокон высокого качества. На отечественном рынке популярна трехслойная и четырехслойная мембрана. Отзывы специалистов и потребителей подтверждают, что чем больше слоев лежит в основе конструкции, тем сильнее ее защитные функции, а значит, и выше энергоэффективность помещения в целом.

В зависимости от типа крыши, особенностей ее конструкции, климатических условий, производители рекомендуют отдавать предпочтение тому или иному виду диффузионных мембран. Так, существуют они для скатных кровель сложных и простых конструкций, для крыш скатного типа с минимальным уклоном, для кровель с фальцевым покрытием и т. д.

Супердиффузионная мембрана укладывается непосредственно на теплоизоляционный слой, настил из досок. Необходимости в вентиляционном зазоре нет. Крепится материал специальными скобами или стальными гвоздями. Края диффузионных листов соединяются работы разрешается проводить даже при экстремальных условиях: в при сильных порывах ветра и т. д.

Кроме того, рассматриваемое покрытие может использоваться в качестве временного перекрытия крыши.

ПВХ-мембраны: сущность и предназначение

ПФХ-мембраны - это материал для кровли, изготавливаемый из поливинилхлорида и обладающий эластичными свойствами. Такой современный кровельный материал вовсе вытеснил битумные рулонные аналоги, имеющие существенный недостаток - необходимость систематического обслуживания и ремонта. На сегодняшний день характерные особенности ПВХ-мембран позволяют использовать их при проведении ремонтных работ на старых кровлях плоского типа. Применяются они и при монтаже новых крыш.

Кровля из такого материала удобна в эксплуатации, а ее установка возможна на любые типы поверхностей, в любое время года и при любых погодных условиях. ПВХ-мембрана обладает следующими свойствами:

  • прочность;
  • устойчивость при воздействии УФ-лучей, различного рода атмосферных осадков, точечных и поверхностных нагрузках.

Именно благодаря своим уникальным свойствам ПВХ-мембраны будут служить вам верой и правдой на протяжении многих лет. Срок использования такой кровли приравнивается к сроку эксплуатации самого здания, в то время как рулонные кровельные материалы нуждаются в регулярном ремонте, а в некоторых случаях и вовсе в демонтаже и установке нового перекрытия.

Между собой мембранные полотна из ПВХ соединяются методом сварки горячим вздохом, температура которого находится в пределах 400-600 градусов по Цельсию. Такое соединение является абсолютно герметичным.

Преимущества ПВХ-мембран

Достоинства их очевидны:

  • гибкость кровельной системы, что максимально соответствует строительному проекту;
  • прочный, обладающий герметичными свойствами соединительный шов между мембранными полотнами;
  • идеальная переносимость перемены климата, погодных условий, температуры, влажности;
  • повышенная паропроницаемость, которая содействует испарению влаги, скопившейся в подкровельном пространстве;
  • множество вариантов цветовых решений;
  • противопожарные свойства;
  • способность длительный период сохранять первоначальные свойства и внешний вид;
  • ПВХ-мембрана - абсолютно экологичный материал, что подтверждается соответствующими сертификатами;
  • процесс монтажа механизирован, поэтому не займет много времени;
  • правила эксплуатации допускают установку различных архитектурных дополнений непосредственно сверху самой мембранной ПВХ-кровли;
  • однослойная укладка сэкономит ваши деньги;
  • простота в обслуживании и ремонте.

Мембранная ткань

Текстильной промышленности мембранная ткань известна давно. Из такого материала изготавливается обувь и одежда: взрослая и детская. Мембрана - основа мембранной ткани, представленная в виде тонкой полимерной пленки и обладающая такими характеристиками, как водонепроницаемость и паропроницаемость. Для производства данного материала эту пленку покрывают наружным и внутренним защитными слоями. Строение их определяет сама мембрана. Делается это с целью сохранения всех полезных свойств даже в случае повреждения. Иными словами, мембранная одежда не промокает при воздействии осадков в виде снега или дождя, но в то же время отлично пропускает пар от тела во внешнюю среду. Такая пропускная способность позволяет коже дышать.

Учитывая все вышесказанное, можно сделать вывод о том, что из подобной ткани изготавливается идеальная одежда зимняя. Мембрана, находящаяся в основе ткани, при этом может быть:

  • с порами;
  • без пор;
  • комбинированная.

В составе мембран, имеющих множество микропор, числится тефлон. Размеры таких пор не достигают габаритов даже капли воды, но больше водной молекулы, что свидетельствует о водонепроницаемости и способности выводить пот.

Мембраны, которые не имеют пор, как правило, произведены из полиуретана. Их внутренний слой концентрирует в себе все потожировые выделения тела человека и выталкивает их наружу.

Строение мембраны комбинированной подразумевает наличие двух слоев: пористого и гладкого. Такая ткань обладает высокими качественными характеристиками и прослужит долгие годы.

Благодаря этим достоинствам одежда и обувь, изготовленные из мембранных тканей и предназначенные для носки в зимнюю пору года, прочные, но легкие, превосходно защищают от мороза, влаги, пыли. Они просто незаменимы для множества активных видов зимнего отдыха, альпинизма.

Loading...Loading...