Главные оси и главные моменты инерции сечения. Главные оси и главные моменты инерции

Главные оси инерции и главные моменты инерции.

При изменении угла величины Ix1, Iy1 и Ix1y1 изменяются. Найдем значение угла, при котором Ix1 и Iy1имеют экстремальные значения; для этого возьмем от Ix1 или Iy1 первую производную по и преравняем ее нулю:илиоткуда(1.28)

Эта формула определяет положение двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой - минемален.

Такие оси называют главными. Моменты инерции относительно главных осей называются главными моментами инерции.

Значения главных моментов инерции найдем из формул (1.23) и (1.24), подставив в них из формулы (1.28), при этом используем известные формулы тригонометрии для функций двойных углов.

После преобразований получим следующую формулу для определения главных моментов инерции: (1.29)

Исследуя вторую производную можно установить, что для данного случая (Ix < Iy) максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси х, а минимальный момент инерции - относительно другой, перпендикулярной оси. В большинстве случаев в этом исследовании нет надобности, так как по конфигурации сечений видно, какая из главных осей соответствует максимуму момента инерции.

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями.

Во многих случаях удается сразу определить положение главных центральных осей. Если фигура имеет ось симметрии, то она является одной из главных центральных осей, вторая проходит через центр тяжести сечения перпендикулярно первой. Сказанное следует из того обстоятельства, что относительно оси симметрии и любой оси, ей перпендикулярной, центробежный момент инерции равен нулю.

В случае если два главных центральных момента инерции сечения равны между собой, то у этого сечения любая центральная ось является главной, и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний шестиугольник).

9.Основные геометрические характеристики сечений

Здесь: C - центр тяжести плоских сечений;

A - площадь сечения;

I x , I y - осевые моменты инерции сечения относительно главных осей;

I xI , I yI - осевые моменты инерции относительно вспомогательных осей;

I p - полярный момент инерции сечения;

W x , W y - осевые моменты сопротивления;

W p - полярный момент сопротивления

Прямоугольное сечение

Сечение равнобедренный треугольник

10.Основные виды сил, действующие на тело. Момент силы относительно центра. Свойства момента сил.

При рас­смот­ре­нии ме­ха­ни­че­ских задач боль­шин­ство сил, дей­ству­ю­щих на тела, можно от­не­сти к трем ос­нов­ным раз­но­вид­но­стям:

Сила все­мир­но­го тя­го­те­ния;

Сила тре­ния;

Сила упру­го­сти.

Все окру­жа­ю­щие нас тела при­тя­ги­ва­ют­ся к Земле, это обу­слов­ле­но дей­стви­ем сил все­мир­но­го тя­го­те­ния. Если мы будем пре­не­бре­гать со­про­тив­ле­ни­ем воз­ду­ха, то мы уже знаем, что все тела па­да­ют на Землю с оди­на­ко­вым уско­ре­ни­ем – уско­ре­ни­ем сво­бод­но­го па­де­ния.

Как и вся­кий пред­мет, тело, под­ве­шен­ное на пру­жине, стре­мит­ся упасть вниз из-за при­тя­же­ния Земли, но, когда пру­жи­на рас­тя­нет­ся до неко­то­рой длины, тело оста­нав­ли­ва­ет­ся, то есть при­хо­дит в со­сто­я­ние ме­ха­ни­че­ско­го рав­но­ве­сия. Мы уже знаем, что ме­ха­ни­че­ское рав­но­ве­сие на­сту­па­ет, когда сумма сил, дей­ству­ю­щих на тело, равна нулю. Это озна­ча­ет, что сила тя­же­сти, дей­ству­ю­щая на груз, долж­на урав­но­ве­сить­ся с неко­то­рой силой, дей­ству­ю­щей со сто­ро­ны пру­жи­ны. Эта сила, на­прав­лен­ная про­тив силы тя­же­сти и дей­ству­ю­щая со сто­ро­ны пру­жи­ны, на­зы­ва­ет­ся силой упру­го­сти.

Прой­дя неко­то­рое рас­сто­я­ние, тело оста­нав­ли­ва­ет­ся, ско­рость тела умень­ша­ет­ся от на­чаль­но­го зна­че­ния до нуля, то есть уско­ре­ние тела – ве­ли­чи­на от­ри­ца­тель­ная. Сле­до­ва­тель­но, на тело со сто­ро­ны по­верх­но­сти дей­ству­ет сила, ко­то­рая стре­мит­ся оста­но­вить это тело, то есть дей­ству­ет про­тив его ско­ро­сти. Эта сила на­зы­ва­ет­ся силой тре­ния.

Момент силы относительно центра (точки).

Моментом силы F относительно центра (точки) О называется вектор m o (F) равный векторному произведению радиуса вектора r , проведенного из центра О в точку А приложения силы, на вектор силы F :

где плечо h  перпендикуляр, опущенный из центра О на линию действия силы F.

Момент m o (F) характеризует вращательный эффект силы F относительно центра (точки) О .

Свойства момента силы:

1. Момент силы относительно центра не изменяется при переносе силы вдоль линии ее действия в любую точку;

2. Если линия действия силы проходит через центр О (h = 0), то момент силы относительно центра О равен нулю .

Посмотрим, как изменяются моменты инерции при повороте осей координат. Положим, даны моменты инерции некоторого сечения относительно осей х, у (не обязательно центральных). Требуется определить J u , J v , J uv -- моменты инерции относительно осей и, v, повернутых относительно первой системы на угол (рис. 3).

Проектируем замкнутый четырехугольник ОАВСО на оси и и v. Так как проекция ломаной линии равна проекции замыкающей, находим:

u = y sin +x cos , v = y cos -- x sin

В выражениях (3), подставив вместо x 1 и y 1 соответственно u и v, исключаем u и v

Рассмотрим два первых уравнения. Складывая их почленно, получим, что сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла и при повороте осей остается постоянной. При этом

где -- расстояние от начала координат до элементарной площадки (рис. 3). Таким образом,

J x + J y = J p

где J p -- полярный момент инерции

величина которого, естественно, не зависит от поворота осей ху.

С изменением угла поворота осей каждая из величин J u и J v меняется, а сумма их остается неизменной. Следовательно, существует такое , при котором один из моментов инерции достигает своего максимального значения, в то время как другой момент инерции принимает минимальное значение.

Дифференцируя выражение J u (5) по и приравнивая производную нулю, находим

При этом значении угла один из осевых моментов будет наибольшим, а другой -- наименьшим. Одновременно центробежный момент инерции J uv при указанном угле обращается в нуль, что легко устанавливается из третьей формулы (5).

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются главными осями. Если они к тому же являются центральными, то тогда они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции. Для определения этого первые две формулы (5) перепишем в виде

Верхний знак соответствует максимальному моменту инерции, а нижний -- минимальному. После того как сечение вычерчено в масштабе и на чертеже показано положение главных осей, нетрудно установить, которой из двух осей соответствует максимальный и которой -- минимальный момент инерции.

Если сечение имеет ось симметрии, то эта ось всегда будет главной. Центробежный момент инерции части сечения, расположенной по одну сторону от оси, будет равен моменту части, расположенной по другую сторону, но противоположен ему по знаку. Следовательно, J ху = 0 и оси х и у являются главными.

Момент инерции относительно оси, параллельной центральной (теорема Штейнера)

ПРЕДИСЛОВИЕ

Лекция № 1 «Геометрические характеристики

Предисловие …………………………………………………………………….4

плоских сечений» ……………………………………………………………….5

2. Лекция № 2 «Главные оси и главные моменты инерции» ..………………………………………….…………………………...13

3. Лекция №3 «Кручение. Расчёты на прочность и жёсткость при кручении» ………………………………………………………………………16

4. Лекция №4 «Срез и смятие. Расчёты на прочность» …….………………………………………………………………..32

5. Вопросы для проверки пройденного материала… ……………………..36

6. Список литературы …………………………………………………………37

В части 2 конспекта лекций содержаться основные теоретические положения и расчётные формулы по следующим темам: Геометрические характеристики плоских сечений, Кручение, Срез и смятие.

Целью конспекта лекций является оказание помощи студентам при изучении предмета, при решении и защите расчетно-графических работ по сопротивлению материалов.


Лекция №1 «Геометрические характеристики плоских сечений»

К геометрическим характеристикам плоских сечений относятся:

· площадь сечения F ,

· статические моменты площади S x , S y ,

· осевые моменты инерции J x , J y ,

· центробежный момент инерции J xy ,

· полярный момент инерции J ρ ,

· момент сопротивления кручению W ρ ,

· момент сопротивления изгибу W x

1.1. Статические моменты площади S x , S y

Статический момент площади сечения относительно данной оси равен сумме произведений элементарных площадок на расстояние до соответствующей оси.

Единицы измерения S x и S y : [см 3 ], [мм 3 ]. Знак «+» или «-» зависит от расположения осей.

Свойство: Статические моменты площади сечения равны нулю (S x =0 и S y =0), если точка пересечения координатных осей совпадает с центром тяжести сечения. Ось, относительно которой статический момент равен, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения.

Где F - суммарная площадь сечения.

Пример 1:

Определить положение центра тяжести плоского сечения, состоящего из двух прямоугольников с вырезом.

Отрицательная площадь вычитается.

1.2. Осевые моменты инерции J x ; J y

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.



Знак всегда «+».

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

1.3. Полярный момент инерции сечения J ρ

Взаимосвязь полярного и осевого моментов инерции:

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

1.4. Центробежный момент инерции сечения J xy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

Единица измерения [см 4 ], [мм 4 ].

Знак «+» или «-».

Если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u и v , проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называются главными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x или y , например у уголка, не будет равен нулю. Для этих сечений определяют положение осей u и v с помощью вычисления угла поворота осей x и y

Центробежный момент относительно осей u и v -

Формула для определения осевых моментов инерции относительно главных центральных осей u и v :

где - осевые моменты инерции относительно центральных осей,

Центробежный момент инерции относительно центральных осей.

Теорема Штейнера:

Момент инерции относительно оси, параллельной центральной, равен центральному осевому моменту инерции плюс произведение площади всей фигуры на квадрат расстояния между осями.

Доказательство теоремы Штейнера.

Согласно рис. 5 расстояние у до элементарной площадки dF

Подставляя значение у в формулу, получим:

Слагаемое , так как точка С является центром тяжести сечения (см. свойство статических моментов площади сечения относительно центральных осей).

Для прямоугольника высотой h и шириной b :

Осевой момент инерции:

Момент сопротивления изгибу:

момент сопротивления изгибу равен отношению момента инерции к расстоянию наиболее удаленного волокна от нейтральной линии:

Для круга:

Полярный момент инерции:

Осевой момент инерции:

Момент сопротивления кручению:

Момент сопротивления изгибу:

Пример 2. Определить момент инерции прямоугольного сечения относительно центральной оси Сx .

Решение. Разобьём площадь прямоугольника на элементарные прямоугольники с размерами b (ширина) и dy (высота). Тогда площадь такого прямоугольника (на рис. 6 заштрихована) равна dF =bdy . Вычислим значение осевого момента инерции J x

По аналогии запишем

Осевой момент инерции сечения относительно центральной

Центробежный момент инерции

Так как оси Сx и Сy являются осями симметрии.

Пример 3. Определить полярный момент инерции круглого сечения.

Решение. Разобьём круг на бесконечно тонкие кольца толщиной радиусом , площадь такого кольца . Подставляя значение в выражение для полярного момента инерции интегрируя, получим

Учитывая равенство осевых моментов круглого сечения и

Получаем

Осевые моменты инерции для кольца равны

с – отношение диаметра выреза к наружному диаметру вала.

Рассмотрим, как изменяются моменты инерции при повороте координатных осей. Положим, даны моменты инерции некоторого сечения относительно осей 0х , 0у (не обязательно центральных)-, - осевые моменты инерции сечения. Требуется определить, - осевые моменты относительно осей u , v , повёрнутых относительно первой системы на угол (рис. 8)

Так как проекция ломаной линии ОАВС равна проекции замыкающей, находим:

Исключим u и v в выражениях моментов инерции:

Рассмотрим два первых уравнения. Складывая их почленно, получим

Таким образом, сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла и при повороте осей остается постоянной. Заметим при этом, что

Где - расстояние от начала координат до элементарной площадки (см. рис.5). Таким образомпо углу и приравнивая производную к нулю, находим

При этом значении угла один из осевых моментов будет наибольшим, а другой - наименьшим. Одновременно центробежный момент инерции обращается в нуль, что можно легко проверить, приравнивая к нулю формулу для центробежного момента инерции .

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются главными осями. Если они к тому же являются центральными (точка начала координат совпадает с центром тяжести сечения), то тогда они называются главными центральными осями (u; v). Осевые моменты инерции относительно главных осей называются главными моментами инерции - и

И их значение определяется по следующей формуле:

Знак плюс соответствует максимальному моменту инерции, знак минус - минимальному.

Существует ещё одна геометрическая характеристика – радиус инерциисечения. Эта величина часто используется в теоретических выводах и практических расчётах.

Радиусом инерции сечения относительно некоторой оси, например 0x, называется величина , определяемая из равенства

F – площадь поперечного сечения,

Осевой момент инерции сечения,

Из определения следует, что радиус инерции равен расстоянию от оси 0х до той точки, в которой следует сосредоточить (условно) площадь сечения F, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения. Зная момент инерции сечения и его площадь, можно найти радиус инерции относительно оси 0х :

Радиусы инерции, соответствующие главным осям, называются главными радиусами инерции и определяются по формулам

Оси, относительно которых центробежный момент инерции равен нулю, называются главными, а моменты инерции относительно этих осей называются главными моментами инерции.

Перепишем формулу (2.18) с учетом известных тригонометрических соотношений:

;

в таком виде

С целью определения положения главных центральных осей, продифференцируем равенство (2.21) по углу α один раз получим

При некотором значении угла α=α 0 , центробежный момент инерции может оказаться равным нулю. Следовательно, с учетом производной (в ), осевой момент инерции примет экстремальное значение. Приравнивая

,

получаем формулу для определения положения главных осей инерции в виде:

(2.22)

В формуле (2.21) вынесем за скобки соs2α 0 и подставим туда значение (2.22) и с учетом известной тригонометрической зависимости получим:

После упрощения окончательно получим формулу для определения значений главных моментов инерции:

(2.23)

Формула (20.1) применяется для определения моментов инерции относительно главных осей. Формула (2.22) не дает прямого ответа на вопрос о том: относительно какой оси момент инерции будет максимальный или минимальный. По аналогии с теорией по исследованию плоского напряженного состояния приведем более удобные формулы для определения положения главных осей инерции:

(2.24)

Здесь α 1 и α 2 определяют положение осей, относительно которых моменты инерции соответственно равны J 1 и J 2 . При этом следует иметь в виду, что сумма модулей углов α 01 и α 02 должна равняться π/2:

Условие (2.24) является условием ортогональности главных осей инерции плоского сечения.

Следует отметить, что при пользовании формулами (2.22) и (2.24) для определения положения главных осей инерции должна соблюдаться такая закономерность:

Главная ось, относительно которой момент инерции максимален, составляет наименьший угол с той исходной осью, относительно которой момент инерции больше.


Пример 2.2.

Определить геометрические характеристики плоских сечений бруса относительно главных центральных осей:


Решение

Предложенное сечение является несимметричным. Поэтому положение центральных осей будет определяться двумя координатами, главные центральные оси будут развернуты относительно центральных осей на определенный угол. Отсюда вытекает такой алгоритм решения задачи по определению основных геометрических характеристик.

1. Разбиваем сечение на два прямоугольника с такими площадями и моментами инерции относительно собственных центральных осей:

F 1 =12 cм 2 , F 2 =18 cм 2 ;

2. Задаемся системой вспомогательных осей х 0 у 0 с началом в точке А . Координаты центров тяжести прямоугольников в этой системе осей такие:

х 1 =4 см; х 2 =1 см; у 1 =1,5 см; у 2 =4,5 см.

3. Определяем координаты центра тяжести сечения по формулам (2.4):

Наносим центральные оси (на рис 2.9 красным цветом).

4. Вычисляем осевые и центробежный моменты инерции относительно центральных осей х с и у с по формулам (2.13) применительно к составному сечению:

5. Находим главные моменты инерции по формуле (2.23)

6. Определяем положение главных центральных осей инерции х и у по формуле (2.24):

Главные центральные оси показаны на (рис. 2.9) синим цветом.

7. Проверим проведенные вычисления. Для этого проведем следующие вычисления:

Сумма осевых моментов инерции относительно главных центральных и центральных осей должна быть одинаковой:

Сумма модулей углов α х и α у, , определяющих положение главных центральных осей:

Кроме того, выполняется положение о том, что главная центральная ось х , относительно которой момент инерции J x имеет максимальное значение, составляет меньший угол с той центральной осью, относительно которой момент инерции больше, т.е. с осью х с.

Формулы (31.5), (32.5) и (34.5) позволяют установить, как изменяются величины моментов инерции сечения при повороте осей на произвольный угол а. Для некоторых значений угла a величины осевых моментов инерции достигают максимума и минимума. Экстремальные (максимальные и минимальные) значения осевых моментов инерции сечения называются главными моментами инерции. Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции.

Из формулы (33.5) следует, что если осевой момент инерции относительно некоторой оси является максимальным (т. е. эта ось главная), то осевой момент инерции относительно перпендикулярной к ней оси является минимальным (т. е. эта ось также главная), так как сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла а.

Таким образом, главные оси инерции взаимно перпендикулярны.

Для нахождения главных моментов инерции и положения главных осей инерции определим первую производную по углу а от момента инерции [см. формулу (31.5) и рис. 19.5]:

Приравниваем этот результат нулю:

где - угол, на который надо повернуть координатные оси у чтобы они совпали с главными осями.

Сравнивая выражения (35.5) и (34.5), устанавливаем, что

Следовательно, относительно главных осей инерции центробежный момент инерции равен нулю. Поэтому главными осями инерции можно называть оси, относительно которых центробежный момент инерции равен нулю.

Как уже известно, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с осями симметрии, равен нулю.

Следовательно, взаимно перпендикулярные оси, из которых одна или обе совпадают с осями симметрии сечения, всегда являются главными осями инерции. Это правило позволяет во многих случаях непосредственно (без расчета) устанавливать положение главных осей.

Решим уравнение (35.5) относительно угла

Уравнению (36.5) в каждом конкретном случае удовлетворяет ряд значений Из них выбирается одно любое. Если оно положительно, то для определения по нему положения одной из главных осей инерции ось следует повернуть на угол против вращения часовой стрелки, а если отрицательное - то по вращению часовой стрелки; другая главная ось инерции перпендикулярна к первой. Одна из главных осей инерции является осью максимум (относительно нее осевой момент инерции сечения максимален), а другая - осью минимум (относительно нее осевой момент инерции сечения минимален).

Ось максимум всегда составляет меньший угол с той из осей (у или ), относительно которой осевой момент инерции имеет большее значение. Это обстоятельство позволяет легко устанавливать, какая из главных осей инерции является осью максимум, а какая - осью минимум. Так, например, если а главные оси инерции и и v расположены, как это показано на рис. 20.5, то ось и является осью максимум (так как образует с осью у меньший угол, чем с осью ), а ось v - осью минимум.

При решении конкретной числовой задачи для определения главных моментов инерции можно выбранное значение угла и значение подставить в формулу (31.5) или (32.5).

Решим эту задачу в общем виде. По формулам из тригонометрии, используя выражение (36.5), найдем

Подставив эти выражения в формулу (31.5), после простых преобразований получим

Главные оси инерции можно провести через любую точку, взятую в плоскости сечения. Однако практическое значение для расчетов элементов конструкции имеют лишь главные оси, проходящие через центр тяжести сечения, т. е. главные центральные инерции. Моменты инерции относительно этих осей (главные центральные моменты инерции) в дальнейшем будем обозначать

Рассмотрим несколько частных случаев.

1. Если то формула (34.5) дает значение центробежного момента инерции относительно любой пары взаимно перпендикулярных осей, равное нулю, и, следовательно, любые оси, полученные путем поворота системы координат являются главными осями инерции (так же как оси ). В этом случае

2. Для фигур, имеющих более двух осей симметрии, осевые моменты инерции относительно всех центральных осей равны между собой. Действительно, направим одну из осей () по одной из осей симметрии, а другую - перпендикулярно к ней. Для этих осей Если фигура имеет более двух осей симметрии, то какая-либо из них составляет острый угол с осью . Обозначим такую ось а перпендикулярную к ней ось

Центробежный момент инерции так как ось является осью симметрии. По формуле же (34.5).

Loading...Loading...