Спектр периодической последовательности импульсов. Спектр последовательности прямоугольных импульсов

Периодическая последовательность прямоугольных видеоимпульсов является модулирующей функцией для формирования периодической последовательности прямоугольных радиоимпульсов (ПППВИ), которые являются зондирующими сигналами для обнаружения и измерения координат движущихся целей. Поэтому, по спектру модулирующей функции (ПППВИ), можно относительно просто и быстро и определить спектр зондирующего сигнала (ПППРИ). При отражении зондирующего сигнала от движущейся цели изменяются частоты спектра гармоник несущего колебания (эффект Доплера). Вследствие чего, можно выделить полезный сигнал, отраженный от движущейся цели, на фоне мешающих (помеховых) колебаний, отраженных от неподвижных объектов (местные предметы) или малоподвижных объектов (метеообразования, стаи птиц и др.).

ПППВИ (рис. 1.42) представляет собой совокупность одиночных прямоугольных видеоимпульсов, следующих друг за другом через равные промежутки времени. Аналитическое выражение сигнала.

где – амплитуда импульсов; – длительность импульсов; – период следования импульсов; – частота следования импульсов, ; – скважность.

Для вычисления спектрального состава периодической последовательности импульсов применяют ряд Фурье. При известных спектрах одиночных импульсов, образующих периодическую последовательность, можно воспользоваться связью между спектральной плотностью импульсов и комплексными амплитудами ряда:

Для одиночного прямоугольного видеоимпульса спектральная плотность описывается формулой

Воспользовавшись связью между спектральной плотностью одиночного импульса и комплексными амплитудами ряда, находим

где = 0; ± 1; ± 2; ...

Амплитудно-частотный спектр (рис. 1.43) будет представлен совокупностью составляющих:

при этом положительным значениям соответствуют нулевые начальные фазы, а отрицательным – начальные фазы, равные .

Таким образом, аналитическое выражение ПППВИ будет равно

Из анализа графиков, приведенных на рисунке 1.43 следует:

· Спектр ПППВИ дискретный состоящий из отдельных гармоник с частотой .

· Огибающая АЧС изменяется по закону .

· Максимальное значение огибающей при равно , значение постоянной составляющей .

· Начальные фазы гармоник в пределах нечетных лепестков равны 0, в пределах четных .

· Количество гармоник в пределах каждого лепестка равно .

· Ширина спектра сигнала на уровне 90% энергии сигнала

· База сигнала , поэтому сигнал является простым.

Если изменять длительность импульсов , либо частоту их повторения F (период ), то параметры спектра и его АЧС будет изменяться.


На рисунке 1.43 представлен пример изменения сигнала и его АЧС при увеличении длительности импульса в два раза.

Периодические последовательности прямоугольных видеоимпульсов и их АЧС параметрами , T ,. и , T , изображены на рисунке 1.44.

Из анализа приведенных графиков следует:

1. Для ПППВИ с длительностью импульса :

· Скважность q =4, следовательно, в пределах каждого лепестка сосредоточено 3 гармоники;

· Частота k-ой гармоники ;

· Ширина спектра сигнала на уровне 90% энергии ;

· Постоянная составляющая равна

2. Для ПППВИ с длительностью импульса :

· Скважность q= 2, следовательно, в пределах каждого лепестка находится 1 гармоника;

· Частота k-ой гармоники осталось неизменной ;

· Ширина спектра сигнала на уровне 90% его энергии уменьшилась в 2 раза ;

· Постоянная составляющая увеличилась в 2 раза .

Таким образом, можно сделать вывод, что при увеличении длительности импульса, происходит “сжатие” АЧС вдоль оси ординат (уменьшается ширина спектра сигнала), при этом увеличиваются амплитуды спектральных составляющих. Частоты гармоник не изменяются.

На рисунке 1.44. представлен пример изменения сигнала и его АЧС при увеличении периода следования в 4 раза (уменьшение частоты повторения в 4 раза).

c) ширина спектра сигнала на уровне 90% его энергии не изменилась;

d) постоянная составляющая уменьшилась в 4 раза.

Таким образом, можно сделать вывод, что при увеличении периода следования (уменьшении частоты повторения происходит “сжатие ”) АЧС вдоль оси частот (уменьшаются амплитуды гармоник с увеличением их количества в пределах каждого лепестка). Ширина спектра сигнала при этом не изменяется. Дальнейшее уменьшение частоты повторения (увеличения периода следования) приведет (при ) к уменьшению амплитуд гармоник до бесконечно малых величин. При этом сигнал превратиться в одиночный, соответственно спектр станет сплошным.

Спектральный анализ периодических сигналов

Как известно, любой сигнал S(t), описываемый периодической функцией времени, удовлетворяющей условиям Дирихле (модели реальных сигналов им удовлетворяют), можно представить в виде суммы гармонических колебаний, называемой рядом Фурье:

где - среднее значение сигнала за период или постоянная составляющая сигнала;

Коэффициенты ряда Фурье;

Основная частота (частота первой гармоники); n=1,2,3,…

Совокупность значений An и n (или при разложении по синусоидальным функциям n) называется спектром периодической функции. Амплитуды гармоник An характеризуют амплитудный спектр, а начальные фазы n (или "n) - фазовый спектр.

Таким образом, спектр периодического сигнала представляется в виде постоянной составляющей и бесконечного числа гармонических колебаний (синусоидальных или косинусоидальных) с соответствующими амплитудами и начальными фазами. Частоты всех гармоник кратны основной частоте. Это означает, что если периодический сигнал следует с частотой, например, 1 кГц, то в его спектре могут быть только частоты 0кГц, 1 кГц, 2 кГц и т.д. В спектре такого периодического сигнала не могут присутствовать, например, частоты 1,5 кГц или 1,2 кГц.

На рис. 1. приведены амплитудный и фазовый спектры некоторого периодического сигнала. Каждая гармоническая составляющая изображена вертикальными отрезки, длины которых (в некотором масштабе) равны ее амплитуде и фазе. Как видно, спектр периодического сигнала является дискретным или, как говорят, линейчатым.

С целью упрощения расчетов часто используют вместо тригонометрической формы записи ряда Фурье комплексную форму его записи, коэффициенты которой объединяют коэффициенты An и n:


Совокупность комплексных амплитуд n называют комплексным спектром периодического сигнала.

Расчет спектров сигналов в комплексной области значительно проще, поскольку нет необходимости рассматривать отдельно коэффициенты и тригонометрической формы записи ряд Фурье.

Спектр периодической последовательности прямоугольных импульсов

Прежде чем рассмотреть спектр периодической последовательности прямоугольных импульсов, рассмотрим параметры этих импульсов.

Параметрами одиночного импульса являются амплитуда, длительность импульса, длительность фронта, длительность спада, спад (скол) плоской вершины.

Амплитуда импульса Um измеряется в вольтах.

Длительность импульса измеряется по основанию, на уровнях 0,1Um или 0,5Um. В последнем случае длительность импульса называется активной. Измеряется длительность импульса в единицах времени.

Длительность фронта tф и спада tс измеряется либо на уровне 0 - Um, либо на уровне (0,1-0,9)Um. В последнем случае длительность фронта и спада называют активными.

Скол плоской вершины характеризуется коэффициентом скола? = ?u/Um,

где?u - значение скола; Um - амплитуда импульса.

Параметрами серии импульсов являются период повторения T, частота следования f, скважность Q, коэффициент заполнения, средние значения напряжения Uср и среднее значение мощности Pср.

Период повторения T = tи +tп, где T - период, tи - длительность импульса, tп - длительность паузы. Измеряются T, tи, и tп в единицах времени.

Частота следования f = 1/T измеряется в герцах и т.д.

Скважность Q = T/tи - величина безразмерная.

Коэффициент заполнения = tи/T - величина безразмерная.

Среднее значение напряжения

Перейдем к рассмотрению амплитудного и фазового спектров сигнала в виде периодической последовательности прямоугольных импульсов длительностью и амплитудой Um, следующих с периодом T (рис. 2).


Рассмотрим случай, когда середина импульса является началом отсчета времени. Тогда на периоде сигнал описывается выражением

Комплексные амплитуды гармонических составляющих.

Функция является знакопеременной и меняет свой знак на обратный при изменении аргумента n1 на величину?щ = 2р/ф, что соответствует приращению фазы на.

где k - порядковый номер интервала на шкале частот, отсчитываемый с нулевой частоты.

Таким образом, амплитуды гармоник, включая постоянную составляющую, определяются выражением:

а фазы - выражением =1, 2,3,…

Функция характеризует изменение амплитудного спектра сигнала в зависимости от частоты. Она обращается в нуль, при значениях её аргумента, кратных. Отсюда следует, что гармоники с номером n = , где = 1,2,3,…будут иметь нулевые амплитуды, т.е. отсутствовать в спектре.

Как известно, отношение называется скважностью последовательности импульсов. Таким образом, в спектре рассматриваемой последовательности будут отсутствовать гармоники, номера которой кратны скважности.

Если начало отсчета времени связать с началом импульса, то амплитудный спектр останется без изменений, а фазы гармоник в соответствии со свойством преобразования Фурье получат дополнительный фазовый сдвиг nщ1ф/2. В результате

Выражения для тригонометрической формы записи ряда Фурье при отсчете времени от середины и начала импульса соответственно имеют вид:


На рис. 3. приведены амплитудные и фазовые спектры рассматриваемой последовательности прямоугольных импульсов при скважности, равной двум.

Фазовые спектры показаны соответственно при отсчете времени от середины и начала импульса. Пунктирные линии на амплитудных спектрах характеризуют поведение модуля спектральной плотности одиночного импульса.

Выражение для значений амплитуд и фаз гармоник легко получить в виде, удобном для расчетов. Так при отсчете времени от середины импульса для скважности, равной двум, имеем

С выхода источника сообщений поступают сигналы, несущие информацию, а также тактовые, используемые для синхронизации работы передатчика и приемника системы передачи. Информационные сигналы имеют вид непериодической, а тактовые- периодическойпоследовательности импульсов.

Для правильной оценки возможности передачи таких импульсов по каналам связи определим их спектральный состав. Периодический сигнал в виде импульсов любой формы можно разложить в ряд Фурье согласно (7).

Для передачи по воздушным и кабельным линиям связи применяются сигналы различной формы. Выбор той или иной формы зависит от характера передаваемых сообщений, частотного спектра сигналов, частотных ивременных параметров сигналов. Большое применение в технике передачи дискретных сообщений получили сигналы, близкие по форме к прямоугольным импульсам.

Вычислим спектр, т.е. совокупность амплитуд постоянной и

гармонических составляющих периодических прямоугольных импульсов (рисунок 4,а) длительностью и периодом. Поскольку сигнал является четной функцией времени, то в выражении (3) все четные гармонические составляющие обращаются в нуль (=0), а нечетные составляющие принимают значения:

(10)

Постоянная составляющая равна

(11)

Для сигнала 1:1 (телеграфные точки) рисунок 4а:

,
. (12)

Модули амплитуд спектральных составляющих последовательности прямоугольных импульсов с периодом
приведены на рис. 4,б. По оси абсцисс отложены основная частота повторения импульсов
() и частоты нечетных гармонических составляющих
,
и т.д. Огибающая спектра изменяется по закону.

При увеличении периода ,по сравнению с длительностью импульса,число гармонических составляющих в спектральном составе периодического сигнала увеличиваются. Например, для сигнала с периодом (рисунок 4,в)получаем, что постоянная составляющая равнаи

В полосе частот от нуля до частотырасполагается пять гармоническихсоставляющих (рисунок 4,г), в то время как прилишь одна.

При дальнейшем увеличении периода повторения импульсов число гармонических составляющих становится все больше и больше. В предельном случае когда
сигнал становится непериодической функцией времени, число его гармонических составляющих в полосе частот от нуля до частотыувеличивается до бесконечности; расположены они будут набесконечноблизких расстояниях по частоте;спектр непериодического сигналастановится непрерывным.

Рисунок 4

2.4 Спектр одиночного импульса

Задан одиночный видеоимпульс (рисунок 5):

Рисунок 5

Метод рядов Фурье допускает глубокое и плодотворное обобщение, позволяющее получать спектральные характеристики непериодических сигналов. Для этого мысленно дополним одиночный импульс такими же импульсами, периодически следующими через некоторый интервал времени , и получим изученную ранее периодическую последовательность:

Представим одиночный импульс как сумму периодических импульсов с большим периодом .

, (14)

где - целые числа.

Для периодического колебания

. (15)

Для того, чтобы вернуться к одиночному импульсу, устремим к бесконечности период повторения: . При этом, очевидно:

, (16)

Обозначим

. (17)

Величиной называется спектральная характеристика (функция) одиночного импульса (прямое преобразование Фурье). Она зависит только от временного описания импульсаи в общем виде является комплексной:

, (18) где
; (19)

; (20)

,

где
- модуль спектральной функции (амплитудно-частотная характеристика импульса);

- фазовый угол, фазо-частотная характеристика импульса.

Найдем для одиночного импульса по формуле (8), используя спектральную функцию:

.

Если , получим:


. (21)

Полученное выражение называется обратным преобразованием Фурье.

Интеграл Фурье определяет импульс в виде бесконечной суммы бесконечно малых гармонических составляющих, расположенных на всех частотах.

На этом основании говорят о непрерывном (сплошном) спектре, которым обладает одиночный импульс.

Полная энергия импульса (энергия, выделяемая на активном сопротивлении Ом) равна

(22)

Изменяя порядок интегрирования, получим

.

Внутренний интеграл есть спектральная функция импульса , взятая при аргументе -, т.е. представляет собой комплексно сопряженную свеличину:

Следовательно

Квадрат модуля (произведение двух сопряженных комплексных чисел равно квадрату модуля).

В этом случае условно говорят, что спектр импульса является двусторонним, т.е. размещается в полосе частот от до.

Приведенное соотношение (23), устанавливающее связь между энергией импульса (на сопротивлении 1 Ом) и модулем его спектральной функции известно под названием равенство Парсеваля.

Оно утверждает, что энергия, заключенная в импульсе , равна сумме энергий всех составляющих его спектра. Равенство Парсеваля характеризует важное свойство сигналов. Если некоторая избирательная система пропускает только часть спектра сигнала, ослабляя другие её составляющие, то это означает, что часть энергии сигнала теряется.

Так как квадрат модуля является четной функцией переменной интегрирования , то удвоив значение интеграла можно ввести интегрирование в пределах от 0 до:

. (24)

При этом говорят, что спектр импульса размещается в полосе частот от 0 до и называется односторонним.

Подынтегральная величина в (23) называется энергетическим спектром (спектральная плотность энергии) импульса

Она характеризует распределение энергии по частоте, и её значение на частоте равно энергии импульса, приходящейся на полосу частот, равной 1 Гц. Следовательно, энергия импульса есть результат интегрирования энергетического спектра сигнала по всему диапазону частот отдо.Иначе говоря, энергия равна площади, заключённой между кривой, изображающей энергетический спектр сигнала и осью абсцисс.

Для оценки распределения энергии по спектру пользуются относительной интегральной функцией распределения энергии (энергетической характеристикой)

, (25)

где
- энергия импульса в заданной полосе частот от 0 до, которая характеризует долю энергии импульса, сосредоточенную в интервале частот от 0 до.

Для одиночных импульсов различной формы выполняются следующие закономерности:


2. Спектр периодической последовательности прямоугольных импульсов

Рассмотрим периодическую последовательность прямоугольных импульсов, изображенную на рис. 5. Данный сигнал характеризуется длительностью импульса, его амплитудой и периодом. По вертикальной оси откладывается напряжение.

Рис.5. Периодическая последовательность прямоугольных импульсов

Начало отсчета выберем в середине импульса. Тогда сигнал разлагается только по косинусам. Частоты гармоник равныn/T , где n - любое целое число. Амплитуды гармоник согласно (1.2.) будут равны :

так как V(t) =Е при , где - длительности импульса и V(t) =0 при , то

Эту формулу удобно записать в виде:

(2.1.)

Формула (1.5.) дает зависимость амплитуды n-ой гармоники от периода и длительности в виде непрерывной функции (функция ). Эту функцию называют огибающей спектра. Следует иметь ввиду, что физический смысл она имеет только на частотах, где существуют соответствующие гармоники. На рис. 6 приведен спектр периодической последовательности прямоугольных импульсов.


Рис.6. Спектр периодической последовательности

прямоугольных импульсов.

При построении огибающей имеем ввиду, что - является

Осцилирующей функцией частоты, а знаменатель монотонно возрастает с ростом частоты. Поэтому получается квазиосцилирующая функция с постепенным убыванием. При частоте стремящейся к нулю, к нулю стремятся одновременно и числитель и знаменатель, их отношение стремится к единице (первый классический предел). Нулевые значения огибающей возникают в точках где т. е.

Где m – целое число (кроме m

СИГНАЛОВ

Рассмотрим несколько примеров периодических колебаний, часто используемых в различных радиотехнических устройствах.

1. ПРЯМОУГОЛЬНОЕ КОЛЕБАНИЕ (РИС. 2.3)

Подобное колебание, часто называемое меандром, находит особенно широкое применение в измерительной технике.

При выборе начала отсчета времени в соответствии с рис. 2.3, а функция является нечетной, а рис. 2.3, б - четной. Применяя формулы (2.24), находим для нечетной функции (рис. 2.3, а) при s(t)=e(t):

Рис. 2.3. Периодическое колебание прямоугольной формы (меандр)

Рис. 2.4. Коэффициенты комплексного (а) и тригонометрического (б) ряда Фурье колебания, показанного на рис. 2.3

Учитывая, что , получаем

Начальные фазы в соответствии с (2.27) равны для всех гармоник.

Запишем ряд Фурье в тригонометрической форме

Спектр коэффициентов комплексного ряда Фурье показан на рис. 2.4, а, а тригонометрического ряда - на рис. 2.4, б (при ).

При отсчете времени от середины импульса (рис. 2.3, б) функция является четной относительно t и для нее

Графики 1-й гармоник и их суммы изображены на рис. 2.5, а. На рис. 2.5, б эта сумма дополнена 5-й гармоникой, а на рис. 2.5, в - 7-й.

С увеличением числа суммируемых гармоник сумма ряда приближается к функции всюду, кроме точек разрыва функции, где образуется выброс. При величина этого выброса равна , т. е. сумма ряда отличается от заданной функции на 18%. Этот дефект сходимости в математике получил название явления Гиббса.

Рис. 2.5. Суммирование 1-й и 3-й гармоник (а), 1, 3 и 5-й гармоник (б), 1, 3, 5 и 7-й гармоник (в) колебания, показанного на рис. 2.3

Рис. 2.6 Периодическое колебание пилообразной формы

Рис. 2.7. Сумма первых пяти гармоник колебания, показанного на рис. 2.6

Несмотря на то, что в рассматриваемом случае ряд Фурье не сходится к разлагаемой функции в точках ее разрыва, ряд сходится в среднем, поскольку при выбросы являются бесконечно узкими и не вносят никакого вклада в интеграл (2.13).

2. ПИЛООБРАЗНОЕ КОЛЕБАНИЕ (РИС. 2.6)

С подобными функциями часто приходится иметь дело в устройствах для развертки изображения в осциллографах. Так как эта функция является нечетной, ряд Фурье для нее содержит только синусоидальные члены. С помощью формул (2.24)-(2.31) нетрудно определить коэффициенты ряда Фурье. Опуская эти выкладки, напишем окончательное выражение для ряда

Как видим, амплитуды гармоник убывают по закону , где . На рис. 2.7 показан график суммы первых пяти гармоник (в увеличенном масштабе).

3. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ (РИС. 2.8)

Ряд Фурье для этой функции имеет следующий вид:

Рис. 2.8. Сумма трех первых гармоник периодической функции

Рис. 2.9. Периодическая последовательность прямоугольных импульсов с большой скважностью

На рис. 2.8 изображена сумма первых трех членов этого ряда. В данном случае отметим более быстрое убывание амплитуд гармоник, чем в предыдущих примерах. Это объясняется отсутствием разрывов (скачков) в функции.

4. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (РИС 2.9)

Применяя формулу (2.32), находим среднее значение (постоянную составляющую)

и коэффициент гармоники

Loading...Loading...