Проблемы математического образования мотивационные. общественная недооценка значимости математического образования, перегруженность школьных и вузовских


I. Значение математики в современном мире Качественное математическое образование необходимо каждому для его успешной жизни в современном обществе. Без высокого уровня математического образования невозможны выполнение поставленной задачи по созданию инновационной экономики, реализации долгосрочных целей и задач социально-экономического развития РФ. Повышение уровня математической образованности сделает более полноценной жизнь россиян в современном обществе, обеспечит потребности в квалифицированных специалистах для наукоемкого и высокотехнологичного производства.


II. Проблемы развития математического образования 1. Проблемы мотивационного характера: - низкая учебная мотивация школьников связанная с общественной недооценкой значимости математического образования; - устаревшее содержание и отсутствие учебных программ, отвечающих потребностям обучающихся и действительному уровню их подготовки. 2. Проблемы содержательного характера: - с одержание математического образования продолжает устаревать и остается формальным и оторванным от жизни; - потребности будущих специалистов в математических знаниях учитываются недостаточно; - подмена обучения «натаскиванием» на экзамен.


II. Проблемы развития математического образования 3. Кадровые проблемы - Выпускники образовательных организаций высшего образования педагогической направленности в своем большинстве не отвечают квалификационным требованиям, профессиональным стандартам, имеют мало опыта педагогической деятельности и опыта применения педагогических знаний.




III. Цели и задачи Концепции Задачи: -модернизация содержания учебных программ математического образования на всех уровнях (с обеспечением их преемственности); -обеспечение отсутствия пробелов в базовых знаниях для каждого обучающегося; -обеспечение наличия общедоступных информационных ресурсов, необходимых для реализации учебных программ математического образования; -повышение качества работы преподавателей математики; -поддержка лидеров математического образования; -обеспечение обучающимся, имеющим высокую мотивацию и проявляющим выдающиеся математические способности, всех условий для развития и применения этих способностей; -популяризация математических знаний и математического образования.


IV. Основные направления реализации Концепции 1. Дошкольное и начальное общее образование: Система учебных программ математического образования при участии семьи должна обеспечить: в начальном образовании – широкий спектр математической занятости обучающихся на уроках и во внеурочной деятельности, материальные, информационные и кадровые условия для развития обучающихся средствами математики


IV. Основные направления реализации Концепции 2. Основное общее и среднее общее образование Математическое образование должно: -предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе; -обеспечить каждого обучающегося развивающей интеллектуальной деятельностью на доступном уровне; -обеспечивать необходимое стране число выпускников, математическая поддержка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики.


IV. Основные направления реализации Концепции 2. Основное общее и среднее общее образование Необходимо предоставить каждому учащемуся возможность достижения соответствия любого уровня подготовки с учетом его индивидуальных потребностей и способностей Возможность достижения высокого уровня подготовки должна быть обеспечена развитием системы специализированных ОО и специализированных классов, системы дополнительного образования детей в области математики. Необходимо стимулировать индивидуальный подход и индивидуальные формы работы с отстающими обучающимися, прежде всего привлекая педагогов с большим опытом работы.


IV. Основные направления реализации Концепции 5. Математическое просвещение и популяризация математики, дополнительное образование Для математического просвещения и популяризации математики предусматривается: -Обеспечение государственной поддержки доступности математики для всех возрастных групп населения; - создание общественной атмосферы позитивного отношения к достижениям математической науки и работе в этой области; -Обеспечение непрерывной поддержки и повышения уровня математических знаний. Система дополнительного образования: математические кружки, соревнования, получение математического образования в дистанционной форме, интерактивные музеи математики, математические проекты на интернет-порталах, профессиональные математические интернет-сообщества.



образования. Перед педагогами дошкольных учреждений и учеными в настоящее время стоит общая задача – совершенствование всей воспитательно-образовательной работы и улучшение подготовки детей к обучению в школе.

Обучению дошкольников началам математики должно отводиться важное место. Это вызвано целым радом причин: - началом школьного обучения с шести лет, обилием информации, получаемой ребенком, повышением внимания к компьютеризации, желанием сделать процесс обучения более интенсивным, стремлением родителей в связи с этим как можно раньше научить ребенка узнавать цифры, считать, решать задачи. Преследуется главная цель: вырастить детей людьми, умеющими думать, хорошо ориентироваться во всем, что их окружает, правильно оценивать различные ситуации, с которыми они сталкиваются в жизни, принимать самостоятельные решения. Обучение детей математике в дошкольном возрасте способствует формированию и совершенствованию интеллектуальных способностей: логике мысли, рассуждений и действий, гибкости мыслительного процесса, смекалки и сообразительности, развитию творческого мышления. Мозг человека требует постоянной тренировки, упражнений. В результате упражнений ум человека становится острее, а он сам – находчивее, сообразительнее.

Познавательное развитие предполагает развитие интересов детей, любознательности и познавательной мотивации; формирование познавательных действий, становление сознания; развитие воображения и творческой активности; формирование первичных представлений о себе, других людях, объектах окружающего мира, о свойствах и отношениях объектов окружающего мира (форме, цвете, размере, материале, звучании, ритме, темпе, количестве, числе, части и целом, пространстве и времени, движении и покое, причинах и следствиях и др.), о малой родине и Отечестве, представлений о социокультурных ценностях нашего народа, об отечественных традициях и праздниках, о планете Земля как общем доме людей, об особенностях ее природы, многообразии стран и народов мира.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Основные проблемы и перспективы школьного математического образования Выполнили: Вайланд Анна Павловна, учитель математики МАОУ СОШ №3, г. Балаково

2 слайд

Описание слайда:

«Математик, как и художник, и поэт, создает узоры. И если его узоры долговечнее, то это, потому что они сотканы из идей» Г.Г. Харди

3 слайд

Описание слайда:

Подтверждая слова известного философа, следует сказать, что математика является царицей всех наук. Но и сама она служит верой и правдой всем наукам.

4 слайд

Описание слайда:

1. ЗНАЧЕНИЕ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ Образовательный, развивающий потенциал математики огромен. Универсальный элемент мышления - логика. Полноценное развитие мышления современного человека, осуществляемое в ходе самопознания и общения с другими людьми, в ходе рассуждений и знакомства с образцами мышления, невозможно без формирования известной логической культуры. Искусство построения правильно логического анализа ситуаций и вывода следствий из известных фактов путем логических рассуждений,

5 слайд

Описание слайда:

2. ЦЕЛИ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ Основными целями математического образования являются: интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценной жизни в обществе; - овладение конкретными математическими знаниями, умениями и навыками, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования; - воспитание личности в процессе освоения математики и математической деятельности; - формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности.

6 слайд

Описание слайда:

Проблемы математического образования в школе Проблемы, которые при этом встают, связанны с отбором обязательных предметов и предметов по выбору, с определением учебного времени на эти группы предметов. В связи с этим различные формы дифференциации станут жизнеспособными, если будут подкреплены соответствующими учебниками. Более способным учащимся предпочтительны отдельные учебники. Менее способным - интегрированные. Но на сегодняшний день в наших школах их практически нет. В каждой школе имеется немало учеников, у которых нет математических наклонностей, желающих выразить себя совсем в других областях знаний.

7 слайд

Описание слайда:

Еще одна очень важная проблема: стране нужны одаренные люди. Поэтому так важно распознать способности учащихся, развить их, дать почувствовать ответственность перед обществом, перед самим собой за этот дар природы. Дифференциация обучения - один из мостков к школе будущего, какой она видится сегодня нашему обществу, всем нам. Важным звеном процесса обучения математике является контроль знаний и умений школьников. От того, как он организован, на что нацелен, существенно зависит эффективность учебной работы. Именно поэтому уделяют серьезное внимание способам организации контроля и его содержанию.

ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ Мотивационные. Общественная недооценка значимости математического образования, Перегруженность школьных и вузовских программ техническими элементами и устаревшим содержанием Нереалистичность аттестационных требований для значительной части выпускников Содержательные. Устаревание содержания и формальность изучения математики на всех ступенях образования. Оторванность программ от жизни. Содержание математического образования на всех его ступенях продолжает устаревать и остается формальным и оторванным от жизни, его преемственность между ступенями - недостаточна. Потребности будущих специалистов в математических знаниях и методах, в частности, опирающихся на информационные технологии учитываются слабо. Фактическое отсутствие различий в учебных программах и аттестационных требованиях для разных групп учащихся приводит к низкой эффективности учебного процесса, подмене обучения «натаскиванием» на экзамен, игнорированию действительных способностей и особенностей подготовки учащихся. Наблюдается отрыв вузовского образования Вузовское образование оторвано от современной науки и практики, его уровень падает, что частично обусловлено недостаточной интегрированностью российской науки в мировую. Кадровые. В Российской Федерации не хватает учителей и преподавателей вузов, которые могут качественно преподавать математику, учитывая учебные интересы различных групп обучающихся. Сложившаяся система подготовки учителей, повышения квалификации и переподготовки педагогических кадров не отвечает современным нуждам. Выпускники педагогических вузов в своем большинстве не имеют достаточной предметной (прежде всего - в школьной математике) и практической подготовки


НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ, ОТРАЖЕННЫЕ В ПРИМЕРНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ Результаты освоения программы не разбиваются по предметам. Используется понятие математической компетентности как совокупности знаний, умений и навыков и способности их применять, относящихся к области математики


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Современное содержание курса математики и информатики начального общего образования, отраженное в ФГОС, базируется на фундаментальных понятиях математики и информатики: символа, совокупности и цепочки, основных операциях над ними, понятиях логики и алгоритмики. Принципиальным является то, что осваиваемые объекты, операции, конструкции, действия всегда, когда это возможно, являются наглядными, доступными зрительному восприятию ребенка (на бумаге или на экране), а иногда даже и тактильному, и кинестетическому (когда объекты материализуются), и слуховому.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Важное место в математической компетентности, формируемой во время обучения в основной школе, занимают элементы, применение (и тем самым - освоение) которых традиционно начинается на уроках физики. В современном курсе физики активно используются понятия перпендикулярности, параллельности, вектора (и «откладывания вектора от точки»), операций над векторами (в частности, разложения вектора по двум осям), тригонометрических функций (угла, меньшего развернутого), производной (скорости изменения), подобия (в частности - в оптике).


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Варианты построения курсов математики и физики: материал вводится в рассмотрение курса математики после того, как он используется в курсе физики. Таким образом, его изучение в курсе математики логически может быть представлено как «теоретическое осмысление», система определений и доказательств для понятий, содержательно, интуитивно, наглядно уже освоенных. построение курсов физики и математики, где приложения в физике появляются после прохождения соответствующего материала в курсе математики. более раннее изучение разделов геометрии, обеспечивающее «теоретическую» базу для физики. Это может быть сделано как с сохранением дедуктивной структуры современного («классического») курса геометрии, так и одновременно с его перестройкой.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: Начальная школа. Осваивается логика математических рассуждений, использование имен, утверждений о существовании и всеобщности (через которые выражаются и утверждения типа «и», «или»). Вводятся структуры данных: линейные (цепочки) и иерархические (деревья), используемые в русском и иностранных языках (грамматика), истории, биологии (классификации); таблицы и столбчатые диаграммы, как один из инструментов представления данных, в том числе о внешнем мире. Осваиваются измерения и анализ данных, в том числе автоматически получаемых цифровыми измерительными приборами, данные визуализируются на компьютере. Осваиваются алгоритмы: в визуальной среде - использующие основные конструкции структурного программирования (без присваивания), в числовой среде - линейные с последовательным присваиванием: «решение арифметических задач по вопросам».


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 5-6 кл. Изучаются рациональные числа, алгебраические выражения, уравнения, подстановка одного выражения в другое, эквивалентные преобразования. Формируется представление об уравнениях, отражающих закономерности (в частности - физические) реального мира. Выполняются задания, где, располагая математической формулировкой физической закономерности, можно выразить одну переменную через другие, можно найти ее значения, имея значения этих других.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 7 кл. Появляется двумерная декартова плоскость (пока с рациональными координатами). Получают представление о функциях так, как это понимается в современной математике, в том числе о функциях, заданных алгебраическими выражениями, и о функциях, возникающих в результате измерений, проводимых цифровыми датчиками в физических процессах (отчасти возможна замена на ручное измерение). Сопоставляются теоретические и экспериментальные кривые. Физические величины, по существу, одномерны.


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Межпредметная синхронизация: 8 кл. Возникает представление о континууме действительных чисел, как отражающем физическую реальность. Полученные знания о пропорциональности геометрических объектов подкрепляются и используются в геометрической оптике. 9 кл. Аппарат метрической геометрии (теорема Пифагора, расстояние на плоскости, теорема косинусов) и тригонометрии (тригонометрические функции углов меньше развернутого), векторной алгебры осваивается параллельно в курсе математики и их приложения – в курсе физики. В курсе физики, в динамике, происходит переход от «скалярной» к «векторной»: скорость, ускорение, сила становятся векторами (по существу - двумерными).


ОСОБЕННОСТИ ПРИМЕРНОЙ ПРОГРАММЫ Освоение понятий: Оценка. В случае, когда для имен, входящих в математическое (в частности - алгебраическое) выражение, известны ограничения на их численные значения, иногда бывает возможно сделать вывод об ограничениях на значение всего выражения. Прикидка. В некоторых ситуациях, например, чтобы усомниться в правильности вычисления, человек высказывает не заведомо верное, но правдоподобное утверждение о значениях промежуточных результатов вычислений, а потом и о значении всего вычисляемого выражения. Приближенное значение. Простейшим видом оценки является оценка, получаемая отбрасыванием всех знаков десятичной записи числа, начиная с некоторого (приближение с недостатком), или аналогичная операция, дающая «оценку сверху».


СОДЕРЖАНИЕ ПРОГРАММЫ Целые, рациональные и действительные числа Измерения, приближения, оценки Алгебраические выражения Уравнения Неравенства Функции Числовые последовательности Описательная статистика Комбинаторика Геометрия Информация и способы ее представления Основы алгоритмической культуры Использование программных систем и сервисов Моделирование Математика в историческом развитии


ГЕОМЕТРИЯ Содержание должно проектироваться с учетом: развития визуального мышления, пространственного воображения; формирования математического словаря, относящегося к общекультурному багажу; уникального двухтысячелетнего источника и последующей интеллектуальной традиции, драмы идей, в которую имеет возможность погрузиться учащийся, уникальной красоты геометрических фактов, построений и доказательств; обеспечения каждого учащегося максимальным опытом самостоятельного доказывания, решения задач на построение; указанной выше задачи обоснования приложений геометрии в физике; применения геометрических понятий и фактов в повседневной и профессиональной деятельности; полезности решения геометрических задач для развития навыков формульных вычислений, в частности, с повышенными (за счет геометрической интерпретации) возможностями контроля правильности результата.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ В требованиях к результатам освоения программы зафиксированы и описаны уровни математической компетентности по завершении каждого класса школы. Описание результатов освоения программы по классам состоит в указании новых элементов компетентности, приобретаемых к завершению очередного класса.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 5 класс В математическую компетентность после 5 класса входят все элементы математической компетентности после начальной школы, расширенные за счет перехода от целых чисел к рациональным: обыкновенным и десятичным дробям, возможность использовать имена (переменные) в алгебраических выражениях, решение уравнений. 6 класс В математическую компетентность после 6 класса входят все элементы математической компетентности после 5 класса.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 7 класс математическую компетентность после 7 класса входят все элементы математической компетентности после 6 класса. Основным расширением является «функциональный взгляд». 8 класс Основными элементами компетентности к концу 8 класса являются: расширение представления о числах, умение решать квадратные уравнения умение работать с многочленами, представление о пропорциональности в геометрии.


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ПРОГРАММЫ 9 класс Основными элементами компетентности к концу 9 класса являются умение: строить графики тригонометрических функций, применять понятие производной, распознавать кривые и фигуры, заданные уравнениями и неравенствами на плоскости, знать и применять свойства векторов, в том числе в их приложениях в геометрии и физике.


Ключевые идеи концепции математического образования Математика является, важным элементом национальной культуры, национальной идеи, предметом нашей гордости и конкурентным преимуществом России. Выработанные в математике, осваиваемые человеком в его образовании важнейшие понятия: определения, утверждения, доказательства, алгоритма, измерения и модели сегодня являются универсальными, общекультурными, значимыми и применяемыми далеко за пределами математики. В современном обществе каждый гражданин должен обладать необходимой математической компетентностью, формирование которой - задача образования, начиная с раннего, дошкольного возраста. Информационная, цифровая цивилизация, экономика, основанная на знании, требуют новых видов и уровней математической грамотности, культуры и компетентности от профессионалов. В частности, создание средств и инструментов ИКТ является, прежде всего, математической деятельностью.


Ключевые идеи концепции математического образования Освоение математики должно происходить, в первую очередь, в процессе решения содержательных задач на основе точно сформулированных правил. Математическая деятельность - ключевой элемент всей системы математического образования. Использование современных технологий и инструментов деятельности, сред взаимодействия становится ключевым фактором в эффективности и результативности образования. Различные сегменты математического образования важны и взаимно необходимы. Среди них: совершенствование в ходе сотрудничества мировых математических лидеров; освоение фундаментальной математики студентами направлений прикладной математики, информационных технологий, будущими инженерами, профессионалами экономики и управления; создание сред и ситуаций математического открытия и взаимодействия для дошкольников, подготовка их воспитателей и родителей.


Ключевые идеи концепции математического образования Необходимо создать условия в ведущих университетах и исследовательских центрах для привлечения российских и мировых лидеров к математическим исследованиям и подготовке кадров в России. Также необходимо создать условия для появления новых перспективных организаций. Особую поддержку и свободу профессиональной деятельности должны получить лидеры: среди школ профессиональной математики и из числа общеобразовательных учреждений, а также отдельные выдающиеся педагоги. Необходимы меры для повышения среднего и минимального уровня освоения математики на каждой ступени общего образования. Профессионально-общественная активность математиков, педагогов-математиков, осознание и реализация ими своей общественной миссии и ответственности необходимы для развития математического образования.


Ключевые идеи концепции математического образования Ряд проблем математического образования не может быть решен внутри него, он связан с более широким кругом вопросов; создание, обсуждение и реализация Концепции может помочь эти вопросы выявить, сформулировать и, возможно, продвинуться в их решении. Проблема качества педагогов-математиков должна получить системное решение, включающее: ориентацию и отбор школьников, деятельностную подготовку, студентов, в том числе склонных к педагогической работе из непедагогических вузов, аттестацию учителей по достигаемому ими приращению математической компетентности учеников, предложение альтернативной деятельности педагогам с пониженными результатами аттестации

Loading...Loading...