Исторический очерк о великом математике карле фридрихе гауссе. Карл Гаусс — интересные данные и факты Труды гаусса

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*



Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе


Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым. Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.
Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса. У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет. Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать. В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом. Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.



Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. В связи с тем, что вершины правильного многоугольника из N сторон задаются решением уравнения (что численно равно . Гаусс обнаружил, что при n = 17 уравнение факторизуется таким образом, что правильный 17-сторонний многоугольник может быть построен только по линейке и циркуля. Это был совершенно новый результат, греческие геометры не подозревали об этом, и открытие вызвало небольшую сенсацию - новости об этом даже были опубликованы в городской газете. Этот успех, который пришел, когда ему едва исполнилось девятнадцать, заставил его принять решение изучать математику.


Но то, что сделало его знаменитым, было два совершенно разных явления в 1801 году. Первым было издание его книги под названием «Арифметические рассуждения», которая полностью переписала теорию чисел и привела к тому, что она(теория чисел) стала, и до сих пор является, одним из центральных предметов математики. Она включает в себя теорию уравнений вида x ^ n - 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой. Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.


Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия. Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова. Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти. Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной. Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.


В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.


Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году. У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса. У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера. Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию. Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида . Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп - пример.


Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.


Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности. Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги. Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.



Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia


В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.


И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим. Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти - настолько это было спорно в то время. И он много работал над так называемыми эллиптическими функциями - вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них. Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.


Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного. С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований. Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.


Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.


Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.


Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв. Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными - или просто интересными -, чем те, о которых мы знали.



Неевклидова геометрия //

В первую ночь XIX века итальянский астроном Джузеппе Пиацци открыл первую из малых планет - Цереру (она оказалась и самой крупной из открытых по сей день почти двух тысяч - ее диаметр составляет около 800 км).

Некоторое время за планетой велись наблюдения. Однако вскоре путь Цереры приблизился к Солнцу, в лучах которого заметить планету было невозможно. А затем астрономы долго не могли найти планету на звездном небе.

За решение сложной по тем временам задачи - определение эллиптической орбиты планеты по трем наблюдениям (то есть зная ее положение на небе в три различных момента времени) - взялся молодой немецкий математик Карл Фридрих Гаусс . Работа была выполнена им весьма обстоятельно, и вскоре астрономы обнаружили Цереру в точном соответствии с расчетами.

Вычисление траектории Цереры сделало имя Гаусса , известное дотоле лишь в узком кругу ученых, достоянием широкой публики. Разработанные им методы остались основой вычисления планетных орбит в течение полутора столетий. Упростить и ускорить эти вычисления удалось лишь с помощью ЭВМ.

Сочинение Гаусса «Теория движения небесных тел» появилось в 1809 году. К этому времени Гаусс был уже известен как автор нескольких работ, и в том числе серьезного труда по теории чисел «Арифметические исследования» (1801 г.).

Первым упоминанием о великом математике, физике, астрономе и геодезисте Карле Фридрихе Гауссе была запись в церковной книге, датированная 4 мая 1777 года:

«Гебхард Дитрих Гаусс и его супруга Доротея урожд. Бенце 30 апреля 1777 года произвели на свет сына... Ребенка нарекли: Иоганн Фридрих Карл...»

Отец будущего ученого был каменщиком, потом садовником, потом водопроводчиком. По воспоминаниям Гаусса, «отец хорошо писал и считал» и очень гордился, когда лейпцигские и брауншвейгские торговцы приглашали его во время ярмарок для ведения счетов.

Юный Карл Фридрих , по его собственным словам, «научился считать раньше, чем говорить». Рассказывают, когда отец однажды громко подсчитывал заработок своих помощников, трехлетний Карл на слух заметил ошибку в вычислениях и указал на нее отцу.

В 1784 году семилетний Карл начинает учиться в местной однокомплектной (то есть с одним учителем) школе. Первый биограф Гаусса, гёттингенский профессор фон Вальтерсгаузен пишет:

«...Душная комната с низким потолком и неровным, потрескавшимся полом. Из одного окна открывается вид на готические башни церкви св. Катарины, из другого - на конюшни. Среди сотни учеников от семи до пятнадцатилетнего возраста взад и вперед расхаживает учитель Бюттнер с хлыстом в руках. Этим беспощадным аргументом своего метода воспитания учитель пользовался достаточно часто - по настроению и по потребности. В этой школе, как бы вырванной из далекого средневековья, юный Гаусс проучился без особых происшествий два года, а затем был переведен в «арифметический класс».

Впрочем, «перевод» выразился лишь в том, что девятилетнего мальчика пересадили из одного ряда скамеек в другой. Ученикам, сидевшим в этом ряду, тот же учитель Бюттнер давал меньше заданий по правописанию и больше - по арифметике. Ученик, первым выполнивший заданное вычисление, клал обычно свою грифельную доску на большой стол; поверх нее клал доску второй, и так далее по порядку. Затем кипа досок переворачивалась. Учитель начинал проверку с доски того, кто решил первым.

Вскоре после перевода девятилетнего Гаусса в арифметический класс учитель дал задание: сложить все натуральные числа от 1 до 100.

«Едва задание было сформулировано,- продолжает фон Вальтерсгаузен,- как юный Карл объявил: «Я положил свою доску». И пока остальные школьники прилежно складывали и перемножали числа, учитель Бюттнер, исполненный собственного достоинства, расхаживал по классу, бросая время от времени саркастические взгляды на младшего из учеников, который давно выполнил задание. А тот спокойно улыбался, проникнутый непоколебимой уверенностью в правильности полученного результата - эта уверенность овладевала Гауссом после окончания каждой крупной работы в течение всей его жизни... В конце урока на грифельной доске Гаусса обнаружилось единственное число, которое, к общему изумлению, представляло собой правильный ответ на поставленную задачу, тогда как многие другие ответы оказались неверными и подлежали «исправлению с помощью хлыста».

«Вместо того, чтобы складывать последовательно 1+2=3; 3+3=6; 6+4=10; 10+5=15 и т.д., что было бы естественным для любого нормального школьника такого возраста,- писал недавно лейпцигский специалист по истории математики профессор Ганс Вусинг,- Гауссу пришло в голову объединить попарно числа с разных концов данного ряда: 1+100=101; 2+99 = 101 и т.д. Таких пар оказалось 50. Затем оставалось лишь выполнить умножение 101х50=5050. Нечего и удивляться: Гауссу не понадобилось много времени, чтобы написать на своей доске это единственное число».

Бюттнер обратил внимание на незаурядные способности своего ученика и достал для него дополнительные пособия. Большую помощь оказал молодой помощник учителя Мартин Бартельс, который также был неравнодушен к математике (впоследствии Бартельс стал профессором математики и, в частности, был одним из учителей Н.И. Лобачевского в Казанском университете). Несмотря на восьмилетнюю разницу в возрасте, Гаусс и Бартельс быстро сблизились на почве общего увлечения математикой. Бюттнер и Бартельс убедили отца Гаусса направить сына в гимназию и обещали добиться материальной поддержки: у бедного ремесленника не было возможности платить за обучение сына в гимназии.

В 1788 году Гаусс был принят - небывалый случай! - сразу во второй класс гимназии. Особенно поразил он своих педагогов блестящими способностями к греческому языку и латыни - эти древние языки наряду с историей считались важнейшими в гуманитарном гимназическом образовании. Способный юноша был представлен герцогу - правителю Брауншвейга, который назначил ему стипендию для обучения в гимназии и в университете.

В те времена дети крестьян и ремесленников весьма редко попадали в гимназии и тем более в университеты - образование и получение «привилегированных» профессий было практически недоступно для низших классов общества. Гаусс оказался счастливым исключением.

Граждане Брауншвейгского герцогства учились обычно в «своем» Хельмиггедском университете. Гаусс выбрал для себя Гёттингенский, известный высоким уровнем развития физико-математических наук и богатой библиотекой. В 1795 году он был зачислен туда студентом. По распоряжению герцога ему предоставлялся «бесплатный стол и 158 талеров в год на расходы». Гаусс еще не избрал себе специальность и колебался между классическим языкознанием и математикой.

Выбор был сделан лишь в следующем году, когда 19-летний студент решил проблему, справиться с которой не удавалось более двух тысячелетий.

Математики издавна пытались ответить на вопрос: какие правильные многоугольники можно построить с помощью циркуля и линейки?

Построение равностороннего треугольника и квадрата известно каждому школьнику. Еще во времена Евклида умели строить и пентаграмму - правильный пятиугольник, путем элементарных построений получали также правильный 15-угольник и многоугольники, содержащие 3*2 n ; 5*2 n ; 15*2 n сторон (например, 6-угольник, 20-угольник и т. д.). Попытки построить другие правильные многоугольники не принесли успеха.

Карл Фридрих Гаусс (1777-1855 гг.).

Гаусс воспользовался тем, что построение правильного n-угольника, вписанного в круг, эквивалентно решению двучленного уравнения х n - 1 = 0 в радикалах. Результат, полученный им, гласит: построение возможно только, если n - простое число вида

При к = 0, 1, 2, 3, 4 получаются соответственно n = 3, 5, 17, 257, 65537 - значит, построить правильные многоугольники с таким числом сторон возможно (самый способ построения - совсем другой вопрос, в котором много технических трудностей). При к = 5 число т получается составным (еще в 1732 году Л. Эйлер нашел, что оно делится на 641), поэтому правильный многоугольник с таким числом сторон с помощью циркуля и линейки построить невозможно. Какие из дальнейших членов ряда окажутся простыми, пока неизвестно.

О своих исследованиях Гаусс сделал сообщение в печати:

«Каждому, кто начинал изучать геометрию, известно, что возможно геометрическое построение различных правильных многоугольников, а именно треугольника, пятиугольника, пятнадцати угольника, а также таких, которые получаются из них путем удвоения числа сторон. Все это было известно еще во времена Евклида; насколько я знаю, расширить этот перечень с тех пор не удавалось. Тем более заслуживает внимания сообщение, что возможно построение и других правильных многоугольников, например, семнадцатиугольника.

Это открытие является частью еще не законченной обширной теории, которая после ее завершения будет опубликована.

К. Ф. Гаусс, студент-математик в Гёттингене».

«Заслуживает внимания, что г-ну Гауссу всего 18 лет и что он занимается философией и классическим языкознанием с таким же успехом, как и математикой.

Э. А. В. Циммерман, профессор».

Это было признанием. Гаусс стал гордостью университета,- профессора и студенты превозносили его способности и успехи. В 1799 году Гаусс впервые строго доказал основную теорему классической алгебры - возможность разложения любого целого многочлена на множители первой и второй степени с действительными коэффициентами (дальнейшее разложение квадратного трехчлена с комплексными корнями считалось в те годы нецелесообразным). За это открытие Хельмштедский университет заочно присвоил Гауссу докторскую степень и предложил доцентуру.

В 1801 году вышла книга Гаусса «Арифметические исследования». Помимо четкого и последовательного изложения многих важных сведений, она содержала 3 крупнейших открытия самого Гаусса: доказательство квадратичного закона взаимности в теории алгебраических чисел, исследования по композиции классов в теории числовых полей и подробное исследование двучленного уравнения х n - 1 = 0, которое составило раздел одной из основных алгебраических теорий, созданной впоследствии Эваристом Галуа. Каждое из этих открытий в отдельности прославило бы имя любого математика. И что удивительно - автору их было лишь чуть больше двадцати!

Как уже говорилось, вычисление траектории Цереры принесло Гауссу самую широкую известность. 31 августа 1802 года секретарь Санкт-Петербургской Академии зачитал письмо берлинского астронома профессора Боде о наблюдении им Цереры в соответствии с указанием ее положения Гауссом. «Эллипс доктора Гаусса дает и сейчас положения этой планеты с удивительной точностью»,- говорилось в письме. Затем секретарь с согласия президента предложил доктора Карла Фридриха Гаусса из Брауншвейга избрать в члены-корреспонденты академии. Гаусс был избран единогласно.

Вскоре секретарь академии Н. И. Фусс (Николай Иванович Фусс, математик, один из учеников Л. Эйлера.) направил Гауссу письмо. Доценту Хельмштедского университета предлагалось переехать в Санкт-Петербург для ведения астрономических наблюдений и избрания в члены академии. Гаусс был польщен. Он попросил отсрочки и начал изучать русский.

Через год Фусс повторил приглашение, обещая квартиру, жалованье 1000 рублей в год (большие деньги по тем временам - гораздо больше, чем 96 талеров оклада доцента). Но вдруг о приглашении прослышал его сиятельство герцог. Он тут же распорядился увеличить оклад Гаусса вчетверо и повелел построить для ученого обсерваторию в Брауншвейге. Гаусс заколебался и решил остаться.

В 1806 году герцог Брауншвейгский был ранен в бою и вскоре умер. Недостроенная обсерватория в ходе военных действий была разрушена. Гаусс с женой и маленьким ребенком остался без службы. Он написал несколько писем в Санкт-Петербург, но из-за военных действий в Европе они не дошли. Лишь письмо, отправленное в конце 1807 года через ехавшего в Россию М. Бартельса, дошло до академии. Но в нем Гаусс уже сообщал, что принял приглашение Гёттингенского университета. Осенью 1808 года он читает в Гёттингене свою первую лекцию: о применении астрономии в мореплавании и в службе точного времени. Отныне и до конца жизни он профессор и директор астрономической обсерватории Гёттингенского университета. Вскоре благодаря Гауссу этот университет и Гёттингенское научное Королевское общество занимают ведущее положение в Европе в области физико-математических наук.

Гауссу принадлежат глубокие и основополагающие исследования почти во всех основных областях математики: в теории чисел, в геометрии, в теории вероятностей, в анализе, в алгебре, а также важные исследования в астрономии, геодезии, механике и в теории магнетизма,- говорил академик И.М. Виноградов в своей речи на торжественном заседании, посвященном 100-летию со дня смерти Гаусса.- Все общие математические идеи появлялись у Гаусса в связи с решением совершенно конкретных задач.

Решение практических задач геодезических измерений побудило Гаусса к открытию фундаментальных теорем о внутренней геометрии поверхностей («Гауссова кривизна»).

Обширная обработка наблюдений и измерений в практических задачах астрономии и геодезии заставила разработать метод наименьших квадратов и исследовать статистические законы распределения («распределение Гаусса»).

Работы по исследованию земного магнетизма привели Гаусса к открытию важных теорем теории потенциала...

Занявшись геодезией (Гауссу было поручено провести геодезическую съемку и составить карту Ганноверского королевства), он создал новую для того времени область геометрии - общую теорию поверхностей. Специально выделенные офицеры (и среди них сын К. Ф. Гаусса - Иозеф) вели измерения на местности с помощью сконструированного Гауссом гелиотропа. Сам Гаусс выполнял многочисленные вычисления.

Первоначально измерения делались с большими погрешностями, однако Гаусс настоял на уточнении триангуляции и добился небывалой по тем временам точности: сумма углов любого треугольника могла отличаться от 180 градусов не более чем на 2 угловых секунды! По приблизительным подсчетам, Гаусс и его помощники обработали в процессе расчетов свыше миллиона исходных данных-расстояний, углов, координат - и притом вручную, без помощи арифмометра или иных счетных приспособлений. Титаническая работа закончилась лишь в 1848 году - географические координаты всех 2578 тригонометрических пунктов Ганноверского королевства были определены весьма точно.

В 1829 году Гаусс познакомился с Вильгельмом Вебером - физиком из Галле. Позднее, в 1831 году, Вебер был приглашен в Гёттингенский университет, где Гаусс и Вебер вели совместные плодотворные исследования в области земного магнетизма и уточнили положение магнитных полюсов Земли. Одновременно они вели исследования в области электричества, электромагнетизма, электродинамики и индукции и, в частности, разработали теоретические основы электромагнитного телеграфа. А в 1836 году Гаусс и Вебер основали в Гёттингене международное общество по исследованию магнетизма.

Интерес Гаусса к точным наукам был поистине неисчерпаем. Но любимым его детищем оставалась теория чисел, которую он считал «царицей математики». Гаусс заложил основы многих современных направлений этой науки.

Особое положение в творчестве Гаусса занимают идеи, относящиеся к обоснованиям геометрии. Еще студентом он много раздумывал о постулатах, сформулированных Евклидом, и о том, является ли пятый постулат (аксиома о параллельных) независимым или он может быть выведен из остальных аксиом.

Возможность существования в плоскости двух различных прямых, параллельных данной прямой и проходящих через точку, не лежащую на этой прямой, противоречит нашим привычным представлениям. Однако уже к 1816 году Гаусс пришел к убеждению, что геометрия, в которой аксиома о параллельных Евклида заменена другой аксиомой, непротиворечива. Гаусс не был согласен с утверждением Канта, что наше привычное пространство является евклидовым. Однако он придерживался кантианского агностицизма:

«Я прихожу к убеждению, что геометрия не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка,- писал Гаусс в 1817 году.- Может быть, в другой жизни мы придем к другим взглядам на природу пространства, которые нам теперь недоступны...»

Гаусс с удовлетворением воспринял открытие Лобачевского, которое соответствовало его внутренним убеждениям. Он высоко оценил достижение русского ученого и добился избрания его в члены-корреспонденты Гёттингенского ученого Королевского общества. Однако сам Гаусс никогда не выступал официально, а тем более в печати с признанием неевклидовой геометрии или со своими соображениями о ней.

Отрывки из писем Гаусса позволят понять причины, по которым он не считал возможным объявлять не только о своих идеях (эти идеи Гаусс так и не разработал с достаточной четкостью), но и о своем отношении к возможности «новой» геометрии.

«Осы, гнездо которых вы разрушаете, подымутся над вашей головой»,- писал Гаусс в 1818 году ученику и другу, который собирался в новом издании своей книги выразить сомнение в справедливости пятого постулата.

«Если бы неевклидова геометрия была истинной.., мы имели бы a priori абсолютную меру длины,- писал он в 1824 году.- Но вы должны смотреть на это как на частное сообщение, которое не должно быть опубликовано».

«Вероятно, я еще не скоро смогу обработать свои исследования, чтобы их можно было опубликовать. Возможно даже, что я не решусь на это всю свою жизнь, потому что боюсь крика беотийцев»,- писал Гаусс в 1829 году, через 3 года после того, как Лобачевский публично объявил о своем открытии.

Гаусс боялся быть не понятым современниками. Он колебался между желанием поддержать научную истину и опасностью растревожить осиное гнездо непонимающих.

Гаусс безвыездно жил в Гёттингене. Лишь однажды по приглашению А. Гумбольдта он принял участие в Берлинском съезде естествоиспытателей. Он мог вести весьма длительные и утомительные исследования, опыты, эксперименты, но очень неохотно читал лекции, считая обучение групп студентов необходимой, но неприятной обязанностью. Однако отдельным любимым ученикам охотно дарил свои силы, время, идеи, десятилетиями поддерживал с ними переписку по научным проблемам.

Гаусс свободно владел латынью , французским, английским. Он с удовольствием читал в оригинале произведения Диккенса, Свифта, Ричардсона, Мильтона и особенно Вальтера Скотта, великих французских просветителей - Монтеня, Руссо, Кондорсе, Вольтера. Два младших сына Гаусса эмигрировали в США - и Гаусс заинтересовался американской литературой. Он читал также по-датски, шведски, испански, итальянски. В юности немного изучал русский, в 63-летнем возрасте, желая более подробно ознакомиться с работами Лобачевского, начал интенсивно заниматься русским языком. «Стал бегло читать по-русски и получал от этого большое удовольствие», - писал он одному из своих учеников. В личной библиотеке Гаусса впоследствии было обнаружено 57 книг на русском языке, и в том числе восьмитомник Пушкина.

Как ни странно, в общественной жизни Гаусс был весьма консервативен. Еще в юности он почувствовал полную зависимость от сильных мира сего, и в частности от герцога, назначившего ему стипендию, а позднее - высокое денежное содержание.

В 1837 году, после того, как король Ганновера Эрнст Август упразднил и без того куцую конституцию, семь профессоров Гёттингенского университета заявили официальный протест. Среди этих ученых был друг Гаусса физик Вебер, известные филологи братья Гримм, зять Гаусса профессор Эвальд. Король отверг протест, цинично заявив, что может «за свои деньги содержать танцовщиц, проституток и профессоров» - сколько и каких душе угодно. Троим из подписавших протест было предложено в трехдневный срок покинуть королевство, остальных выставили из университета. Престиж Гёттингенского университета после этой скандальной истории резко упал и восстановился лишь через несколько десятилетий.

Гаусса все эти события не касались. Он твердо держался принципа не вмешиваться в политику.

В 1849 году состоялись торжества по случаю пятидесятилетнего юбилея присвоения Гауссу докторской степени. В Гёттинген прибыли известные математики: П. Дирихле (впоследствии преемник Гаусса в Гёттингенском университете), К. Якоби и другие. Эти почести обрадовали Гаусса куда больше, чем всевозможные панегирики в печати и сообщения об избрании почетным членом научных обществ и академий.

В последние годы Гауссом овладела апатия. Он мало и с трудом двигался, но сохранил ясность речи и мышления. В феврале 1851 года он писал Александру Гумбольдту: «Хотя уже много лет я не страдаю какими-либо болезнями, но всегда чувствую недомогание и постоянную сонливость. С этим связаны и повышенная раздражительность и необходимость постоянно беречься, а также однообразный уклад жизни...»

Гаусс носил легкую черную шапочку, длинный коричневый сюртук и серые брюки,- рассказывал один из последних учеников Гаусса, Рихард Дедекинд.- Он большей частью сидел в удобной позе, слегка склонившись вперед. Говорил свободно, очень просто и отчетливо. Когда хотел подчеркнуть свою точку зрения и употреблял специальные термины, склонялся к собеседнику и смотрел прямо на него пронзительным взглядом своих красивых голубых глаз... Для числовых примеров, которым он всегда придавал большое значение, он имел небольшие листочки с нужными цифрами.

С возрастом здоровье начало сдавать. Врачи констатировали перенапряжение и расширение сердца. Лекарства приносили лишь некоторое облегчение. В июне 1854 года экипаж, в котором ехал со своей дочерью 77-летний Гаусс, опрокинулся. Это происшествие потрясло Гаусса, хотя ни он, ни дочь не получили ни единой царапины.

Гаусс скончался 23 февраля 1855 года . Он был похоронен на кладбище в Гёттингене. В соответствии с последней волей ученого на его надгробном памятнике выгравирован правильный 17-угольник, вписанный в окружность. Память Гаусса была увековечена выбитой по королевскому указу медалью с латинской надписью «Карл Фридрих Гаусс - король математиков ».

С первых лет Гаусс отличался феноменальной памятью и выдающимися способностями к точным наукам. Всю свою жизнь он совершенствовал свои познания и систему счета, что принесло человечеству множество великих изобретений и бессмертных трудов.

Маленький принц математики

Карл родился в Брауншвейге, в Северной Германии. Это событие произошло 30 апреля 1777 года в семье бедного рабочего Герхарда Дидериха Гаусса. Хотя Карл был первым и единственным ребенком в семье, у отца редко находилось время на воспитание мальчика. Чтобы как-то прокормить семью, ему приходилось хвататься за любую возможность заработать: обустройство фонтанов, садовничество, каменные работы.

Большую часть своего детства Гаусс провел вместе с матерью Доротеей. Женщина души не чаяла в своем единственном сыне и, в дальнейшем, безумно гордилась его успехами. Она была веселой, умной и решительной женщиной, но, в силу своего простого происхождения, - неграмотной. Поэтому, когда маленький Карл, попросил научить его писать и считать, помочь ему оказалось нелегкой задачей.

Впрочем, мальчик не потерял энтузиазма. При любой удобной возможности он расспрашивал взрослых: «Что это за значок?», «Какая это буква?», «Как это прочитать?». Таким нехитрым способом он смог выучить весь алфавит и все цифры уже в трехлетнем возрасте. Тогда же ему поддались и самые простые операции счета: сложение и вычитание.

Как-то раз, когда Герхард снова снял подряд на каменные работы, он расплачивался с рабочими в присутствии маленького Карла. Внимательный ребенок в уме успел пересчитать все озвученные отцом суммы, и тут же нашел ошибку в его подсчетах. Герхард усомнился в правоте своего трехлетнего сына, но, пересчитав, действительно, обнаружил неточность.

Пряники вместо кнута

Когда Карлу исполнилось 7, родители отдали его в народную Екатерининскую школу. Всеми делами здесь заведовал немолодой и строгий учитель Бюттнер. Главным методом воспитания у него были телесные наказания (впрочем, как и везде в то время). В устрашение при себе Бюттнер носил внушительный хлыст, которым первое время попадало и маленькому Гауссу.

Сменить гнев на милость Карлу удалось достаточно быстро. Как только прошел первый урок по арифметике, Бюттнер кардинально изменил отношение к смышленому мальчику. Гауссу удавалось решать сложные примеры буквально на лету, используя оригинальные и нестандартные методы.

Так на очередном уроке Бюттнер задал задачу: сложить все числа от 1 до 100. Как только учитель закончил объяснять задание, Гаусс уже сдал свою табличку с готовым ответом. Позже он пояснил: «Я не складывал числа по порядку, а разделил их попарно. Если сложить 1 и 100 – получим 101. Если сложить 99 и 2 – тоже 101, и так далее. Я умножил 101 на 50 и получил ответ». После этого Гаусс стал любимым учеником.

Таланты мальчика заметил не только Бюттнер, но и его помощник – Христиан Бартельс. На свое небольшое жалование он покупал учебники по математике, по которым занимался сам и учил десятилетнего Карла. Эти занятия привели к ошеломительным результатам – уже в 1791 году мальчика представили герцогу Брауншвейгскому и его приближенным особам, как одного из самых талантливых и перспективных учеников.

Циркуль, линейка и Геттинген

Герцог был в восторге от юного дарования и пожаловал Гауссу стипендию в размере 10 талеров в год. Только благодаря этому, мальчику из бедной семьи удалось продолжить обучение в самой престижной школе – Каролинской коллегии. Там он получил необходимую подготовку и в 1895 году с легкостью поступил в Геттингенский университет.

Здесь Гаусс совершает одно из своих величайших открытий (по мнению самого ученого). Юноше удалось рассчитать построение 17-угольника и воспроизвести его с помощью линейки и циркуля. Другими словами, он решил уравнение х17- 1 = 0 в квадратичных радикалах. Это показалось Карлу настолько значимым, что в этот же день он начал вести дневник, в котором завещал начертить 17-угольник на своем надгробии.

Работая в этом же направлении, Гауссу удается построить правильный семи- и девятиугольник и доказать, что возможно построение многоугольников с 3, 5, 17, 257 и 65337 сторонами, а также с любым из этих чисел, умноженным на степень двойки. Позже эти числа нарекут «простыми гауссовыми».

Звезды на кончике карандаша

В 1798 году Карл покидает университет по неизвестным причинам и возвращается в родной Брауншвейг. При этом свою научную деятельность молодой математик и не думает приостанавливать. Наоборот, время, проведенное в родных краях, стало самым плодотворным периодом его работы.

Уже в 1799 году Гаусс доказывает основную теорему алгебры: «Количество действительных и комплексных корней многочлена равно его степени», исследует комплексные корни из единицы, квадратичные корни и вычеты, выводит и доказывает квадратичный закон взаимности. С этого же года он становится приват-доцентом университета Брауншвейга.

В 1801 году увидела свет книга «Арифметические исследования», где почти на 500 страницах ученый делится своими открытиями. В нее не вошло ни одного незаконченного исследования или сырого материала – все данные максимально точны и доведены до логического вывода.

В это же время он увлекается вопросами астрономии, а точнее математическими приложениями в этой области. Благодаря одному только правильному расчету, Гаусс нашел на бумаге то, что потеряли на небе астрономы – малую планету Цирреру (1801г, Дж. Пиацци). Этим методом было найдено еще несколько планет, в частности, Паллада (1802г, Г.В. Ольберс). Позже Карл Фридрих Гаусс станет автором бесценного труда под название «Теория движения небесных тел» (1809г) и множества исследований в области гипергеометрической функции и сходимости бесконечных рядов.

Браки без расчета

Здесь же, в Брауншвейге, Карл знакомится со своей первой женой – Иоанной Остгоф. Они поженились 22 ноября 1804 года и счастливо прожили на протяжении пяти лет. Иоанна успела родить Гауссу сына Иосифа и дочь Минну. При родах третьего ребенка – Луи – женщина скончалась. Вскоре погиб и сам младенец, и Карл остался один с двумя детьми. В письмах своим товарищам математик не раз утверждал, что эти пять лет в его жизни были «вечной весной», которая, к сожалению, закончилась.

Это несчастье в жизни Гаусса не стало последним. Примерно в то же время от смертельных ран погибает друг и наставник ученого – герцог Брауншвейгский. С тяжелым сердцем Карл покидает родину и возвращается в университет, где принимает кафедру математики и пост директора астрономической лаборатории.

В Геттингене он сближается с дочерью местного советника – Минной, которая была хорошей подругой его покойной жены. 4 августа 1810 года Гаусс женится на девушке, но их брак с самого начала сопровождают ссоры и конфликты. Из-за бурной личной жизни Карл даже отказался от места в Берлинской академии наук Минна родила ученому троих детей – двух сыновей и дочь.

Новые изобретения, открытия и ученики

Высокий пост, который Гаусс занимал в университете, обязывал ученого к преподавательской карьере. Его лекции отличались свежестью взглядов, а сам он был добрым и отзывчивым, что вызывало отклик у студентов. Тем не менее, сам Гаусс преподавать не любил и считал, что, уча других, он тратит свое время попусту.

В 1818 году Карл Фридрих Гаусс одним из первых начинает работу, связанную с неевклидовой геометрией. Побоявшись критики и насмешек, он так и не печатает свои открытия, тем не менее, яро поддерживает Лобачевского . Такая же участь постигла кватернионы, которые первоначально исследовал Гаусс под названием «мутации». Открытие приписали Гамильтону , который опубликовал свои труды, спустя 30 лет после смерти немецкого ученого. Эллиптические функции впервые появились в работах Якоби, Абеля и Коши , хотя основной вклад принадлежал именно Гауссу.

Спустя несколько лет Гаусс увлекается геодезией, проводит съемку Ганноверского королевства с помощью метода наименьших квадратов, описывает действительные формы земной поверхности и изобретает новый прибор – гелиотроп. Несмотря на простоту конструкции (зрительная труба и два плоских зеркала), это изобретения стало новым словом в геодезических измерениях. Результатом исследований в этой области стали труды ученого: «Общие исследования о кривых поверхностях» (1827г) и «Исследования о предметах высшей геодезии» (1842-47гг), а также понятие «гауссовой кривизны», которое дало начало дифференциальной геометрии.

В 1825 году Карл Фридрих совершает еще одно открытие, которое увековечило его имя – гауссовы комплексные числа. Он успешно использует их для решения уравнений высоких степеней, что позволило провести ряд исследований в области вещественных чисел. Основным результатом стал труд «Теория биквадратичных вычетов».

К концу жизни Гаусс изменил свое отношение к преподаванию и стал уделять своим ученикам не только лекционные часы, но и свободное время. Его работы и личный пример оказали огромное влияние на молодых математиков: Римана и Вебера. Дружба с первым привела к созданию «римановой геометрии», а со вторым – к изобретению электромагнитного телеграфа (1833 г).

В 1849 году за заслуги перед университетом, Гаусс был удостоен звания «почетный гражданин Геттингена». К этому времени в круг его друзей уже входят такие известные ученые, как Лобачевский, Лаплас , Ольберс, Гумбольд, Бартельс и Баум.

С 1852 года крепкое здоровье, которое досталось Карлу от отца, дало трещину. Избегая встреч с представителями медицины, Гаусс рассчитывал сам справиться с болезнью, но на этот раз его расчет оказался неверным. Он умер 23 февраля1855 года, в Геттингене, окруженный друзьями и единомышленниками, которые позже наградят его титулом короля математики.

Всякое целое число большее единицы, однозначно разлагается на простые делители.

Иоганн Карл Фридрих Гаусс

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг - 23 февраля 1855) - немецкий математик, астроном и физик, считается одним из величайших математиков всех времён, «королём математиков».

Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери - яркий интеллект.

В семь лет Карл Фридрих поступил в Екатерининскую народную школу. Поскольку считать там начинали с третьего класса, первые два года на маленького Гаусса внимания не обращали. В третий класс ученики обычно попадали в десятилетнем возрасте и учились там до конфирмации (пятнадцати лет). Учителю Бюттнеру приходилось заниматься одновременно с детьми разного возраста и разной подготовки. Поэтому он давал обычно части учеников длинные задания на вычисление, с тем чтобы иметь возможность беседовать с другими учениками. Однажды группе учеников, среди которых был Гаусс, было предложено просуммировать натуральные числа от 1 до 100. По мере выполнения задания ученики должны были класть на стол учителя свои грифельные доски. Порядок досок учитывался при выставлении оценок. Десятилетний Карл положил свою доску, едва Бюттнер кончил диктовать задание. К всеобщему удивлению, лишь у него ответ был правилен. Секрет был прост: пока диктовалось задание, Гаусс успел для себя открыть заново формулу для суммы арифметической прогрессии! Слава о чудо-ребёнке распространилась по маленькому Брауншвейгу.

В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать - математиком или филологом.

О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду - герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счёта. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Гёттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.

В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был всё создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Гёттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.

«30 марта 1796 года наступает для него день творческого крещения… - пишет Ф. Клейн. - Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчётливо осознал, что из его теории вытекает построение семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n -угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида

n = 2 2 k + 1

(числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

Это событие явилось поворотным пунктом в жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».

Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времён». Сколь трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошёл, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.

Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.

«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашёл отношение объёмов цилиндра и вписанного в него шара — 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, но памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», - писал Г. Вебер.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса - летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашёл полное доказательство гипотезы Эйлера. Впрочем, Гаусс ещё не знал о работах своих великих предшественников. Весь нелёгкий путь к «золотой теореме» он прошёл самостоятельно!

Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.

В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности - о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашёл лишь 23 октября 1813 года, причём в дневниках он отметил, что это совпало с рождением сына.

За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.

«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.

В Брауншвейге Гаусс не имел литературы, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвящённую доказательству Основной теоремы алгебры — утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом - комплексным. Гаусс критически разбирает все предшествующие попытки доказательства и с большой тщательностью проводит идею д"Аламбера. Безупречного доказательства всё же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал ещё три доказательства Основной теоремы (последний раз - в 1848 году).

«Математический век» Гаусса - менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).

Очень многие исследования Гаусса остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны 1939-45 оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 томов сочинений Гаусса. Наиболее интересными в этом наследии являются дневник Гаусса и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Гаусс отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Гаусса в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Гаусс пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, было причиной того, что Гаусс их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Гаусса неевклидова геометрия была построена и опубликована Н.И. Лобачевским, Гаусс отнёсся к публикациям Н.И. Лобачевского с большим вниманием, был инициатором избрания его чл.-корр. Гёттингенского учёного общества, но своей оценки великого открытия Н.И. Лобачевского по существу не дал. Архивы Гаусса содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит Якоби и Абелю. Содержательный набросок теории кватернионов, 20 лет спустя независимо открытых Гамильтоном так же обнаружен в неопубликованных работах Гаусса.

С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.

Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц. Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было непросто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной.

Гаусс начал интересоваться астрономией ещё в Гёттингене. Кое-какие наблюдения он проводил в Брауншвейге, причём часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу.

Учёный вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашёл планету (её назвали Церерой). Это была подлинная сенсация!

25 марта 1802 году Ольберс открывает ещё одну планету - Палладу. Гаусс быстро вычисляет её орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.

К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Ещё в 1802 году он предлагает куратору Гёттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 года. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», — восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, по-видимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.

Жизнь Гаусса в Гёттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребёнок. Вдобавок Наполеон обложил Гёттинген тяжёлой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Лаплас. Оба раза Гаусс гордо отказался. Однако нашёлся ещё один благодетель, на этот раз - аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гёте. «Смерть мне милее такой жизни», - пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».

В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в своё время за три дня напряжённого счёта вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространённых методов обработки результатов наблюдений.

На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.

Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Мёбиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.

К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии - задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях».

В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящён внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с её положением в пространстве.

Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Гаусс предложил числовую характеристику меры искривления поверхности.

К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несёт печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы ещё не определились.

В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса: умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний физик Вильгельм Вебер. Гаусс познакомился с ним в 1828 году в доме Гумбольдта. Гауссу было 54 года, о его замкнутости ходили легенды, и всё же в Вебере он нашёл сотоварища по занятиям наукой, какого он никогда не имел прежде.

Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нойбургом.

Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Гёттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Гаусс создаёт одну из важнейших глав математической физики - теорию потенциала.

Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Гёттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма). Возвратился в Гёттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года.

В последние годы жизни Гаусса ему воздавались всевозможные почести, но он не был настолько счастлив, насколько заслужил на это право. Оставаясь, как всегда, могучим разумом и плодотворно изобретательным, Гаусс не стремился к отдыху, когда за несколько месяцев до смерти появились первые признаки его последней болезни.

В первый раз, более чем за 20 лет, он покинул Гёттинген 16 июня 1854 года, чтобы увидеть строительство железной дороги между его городом и Касселеем - Гаусс всегда проявлял большой интерес к сооружению и действию железных дорог. Лошади понесли, он был выброшен из кареты, остался невредим, но сильно потрясённым. Он выздоровел и даже доставил себе удовольствие быть очевидцем церимонии открытия железной дороги 31 июля 1854 года. Это был его утешительный день.

В самом начале нового года он стал страдать большей частью от расширения сердца и недостаточности дыхания. Тем не менее, он работал, когда мог, хотя его руку сводило и, наконец, нарушился его красивый ясный почерк.

В полном сознании почти до самого конца, Гаусс спокойно умер рано утром 23 февраля 1854 года на 78-м году жизни.

В честь Гаусса названы:

  • кратер на Луне;
  • одна из малых планет;
  • система единиц СГС именуется гауссовой;
  • единица измерения магнитной индукции в системе СГС;
  • одна из фундаментальных астрономических постоянных — постоянная Гаусса;
  • вулкан Гауссберг в Антарктиде;
  • смотровая башня в немецком городе Дрансфельд;
  • один из корпусов Колифорнийского университета;
  • одно из зданий университета в штате Айдахо (Инженерный колледж).
  • В Федеративной Республике Германии (1955, 1977) и Германской Демократической Республике (1977) выпущены почтовые марки посвященные памяти Гаусса.

Портрет Гаусса был размещён на банкноте в 10 немецких марок:

Имя Гаусса носят следующие научные объекты:

  • Задача Гаусса
  • Закон Гаусса
  • Интеграл вероятности Гаусса
  • Интерполяционная формула Гаусса
  • Квадратурная формула Гаусса
  • Распределение Гаусса-Лапласа
  • Гауссово кольцо
  • Гауссово число
  • Гауссовский процесс
  • Гауссовы логарифмы
  • Алгоритм Гаусса (вычисления даты пасхи)
  • Дискриминанты Гаусса
  • Гауссова кривизна
  • Лента Гаусса
  • Метод Гаусса (решения систем линейных уравнений)
  • Метод Гаусса - Жордана
  • Метод Гаусса - Зейделя
  • Нормальное или Гауссово распределение
  • Прямая Гаусса
  • Пушка Гаусса
  • Ряд Гаусса
  • Теорема Гаусса - Ванцеля
  • Фильтр Гаусса
  • Формула Гаусса - Бонне

По материалам статьи «Карл Гаусс» книги Д. Самина «100 великих учёных», книги Э.Т. Белл «Творцы математики» и Математического энциклопедического словаря.

Loading...Loading...