Процесс синтеза и рнк с молекулы днк. Биосинтез белков, мир рнк и происхождение жизни

Синтез РНК : все гены РНК делят на 3 группы - кодирует и-РНК, (Синтез белка - на них строится и-РНК), кодирует р-РНК, кодирует т-РНК.. У прокариот известно 7 генов, кодирующих р-РНК. Длина каждого такого гена около 5 тыс. нуклеотид. На таком гене сначала образ-ся незрелая р-РНК. В ней содерж-ся: несущие инф-цию ставки, инф-ция о 3 видах р-РНК и о нескольких видах т-РНК. Созревание сост в том, что вырезаются все ставки и цепи р- и т-РНК. Основная часть генов т-РНК одиночная. Часть т-РНК генов объедин-ся в группы с генами р-РНК. Синтез ДНК - репликация ДНК - процесс самоудвоения ДНК. Происходит в S - период интерфазы. Репликация всех двуцепочечных ДНК поликонсервативна, т.е. в дочерней молекуле одна цепь родительская, а другая построена вновь. Репликация начинается в особых точках молекулы ДНК - точках инициации синтеза или точках ori. У прокариот на единственной молекуле ДНК имеется одна точка ori. У эукариот на одной молекуле ДНК (число молекул ДНК = числу хромосом) множество точек ori, расположенных на расстоянии 20000 пар нуклеотидов др. от друга. Материнская молекула ДНК начинает расходиться на 2 цепи в точке ori с образованием вилки репликации на материнской цепи (ориентированной 3"-5"). Дочерняя цепь строится из свободных дезоксинуклеотидов ядра сразу в направлении 5"-3". И это строительство совпадает с удвоением вилки репликации, эта дочерняя цепь наз-ся лидирующей. На материнской цепи ДНК, антипараллельно матричной, дочерняя цепь запаздывающая, она строится отдельными кусками или фрагментами - указаки, т.к. направление строительства противоположно движению вилки репликации. Для начала синтеза ДНК требуется прайнер - короткая РНК - затравка длиной 5-10 рибонуклеотидов. Прайнер связывает первый свободный дезоксинуклеотид и начинает строить дочерние цепи ДНК. В лидирующей цепи прайнер один, а в запаздывающей у каждого отрезка указаки - длина этих отрезков 100-200 нуклеотидов у высших организмов, 1000-2000 у прокариот. Ферменты репликации : для синтеза прайнеров нужна РНК - полимераза. для образования эфирных связей между фосфатами дезоксинуклеотидов при строительстве цепи ДНК нужна ДНК полимеразы. Для вырезания прайнеров, неправильно включённых в состав ДНК нуклеотидов, нужна ДНК - экзонуклеаза. Для сшивания фрагментов указаки в сплошную запаздывающую дочернюю цепь нужен фермент ДНГ - лигаза. Скорость синтеза ДНК у эукариот 10-100 пар нуклеотидов в секунду, а у прокариот 1500 пар (в одном месте). Репликация по типу катящегося колеса. Двухцепочечная кольцевая ДНК надрезается в точке начала катящегося кольца. Причём надрезается одна цепь из двух - матричная. К освободившемуся 3" концу этой цепи начинают пристраиваться свободные дезоксинуклеотиды. По мере удлинения дочерней цепи ДНК 5" конец из материнского кольца вытесняется. Когда 3" и 5" концы встретятся в одной точке, синтез ДНК прекращается и дочернее кольцо отделяется от материнского.

Вначале – несколько общих положений.

Вся программа химических процессов в организме записана в ДНК – молекулярном хранилище генетической информации. Обычно поток этой информации изоражают схемой: ДНК РНК БЕЛОК, на которой представлен процесс перевода генетического языка нуклеотидных последовательностей в аминокислотные последовательности. Схема ДНК РНК обозначает биосинтез молекул РНК, нуклеотидная последовательность которых комплиментарна какому-то участку (гену) молекулы ДНК. Этот процесс обычно называют транскрипцией. Таким образом синтезируется тРНК, рРНК, мРНК. Обозначение РНК БЕЛОК выражает биосинтез полипептидных цепей, аминокислотная последовательность которых задается нуклеотидной последовательностью мРНК при участии тРНК и рРНК. Этот процесс называется трансляцией. Оба процесса происходят при участии многочисленных белков, выполняющих каталитические и некаталитические функции.

Биосинтез РНК.

Для синтеза всех видов РНК (р, т, м) используется только один тип ферментов: ДНК – зависимые РНК – полимеразы, в состав которых входит прочно связанный ион цинка. В зависимости от того, какой вид РНК синтезируется, выделяют РНК – полимеразу 1 (катализирует синтез рРНК), РНК – полимеразу 2 (мРНК) и РНК – полимеразу 3 (тРНК). В митохондриях обнаружен еще один тип – РНК – полимераза 4. Молекулярные массы всех видов РНК – полимераз лежат в пределах 500000 – 600000. весь синтез проходит в соответствии с информацией, содержащейся в соответствующих генах ДНК. Из какого бы источника не был бы выделен выделен фермент РНК – полимераза (из животных, растений, бактерий), для него характерны следующие особенности функционирования in vivo:1) Используются трифосфонуклеозиды, а не ди- и не монофосфонуклеозиды. 2) Для оптимальной активности необходим ко-фактор – ион магния. 3) Фермент использует только одну цепь ДНК в качестве матрицы для синтеза комплиментарной копии РНК (почему и синтез - матричный). Последовательное присоединение нуклеотидов происходит так, что цепь наращивается от 5` к 3` концу (5` - 3` иолимеризация):

Ф – Ф – Ф – 5` Ф – Ф – Ф – 5` Ф – Ф – Ф –5`

5) Для начала синтеза может использоваться затравочная порция РНК:

Нуклеозидтрифосфат

(РНК)n остатков (РНК)n + 1 + ПФ

РНК – полимераза

В то же время может идти (чаще так и бывает) полимеризация без затравки, с использованием вместо затравочной порции только одного нуклеозидтрифосфата (как правило, это АТФ или ГТФ).

6) В ходе этой полимеризации фермент копирует только одну цепь ДНК и передвигается по матрице в направлении 3` - 5`. Выбор копируемой цепи не случаен.

7) Цепь матричной ДНК содержит сигналы инициации синтеза РНК для фермента, расположенные в определенных положениях перед началом гена, и сигналы терминации синтеза, расположенные вслед за концом гена или группы генов.

8) Для описанных выше процессов может потребоваться суперскрученная ДНК, что помогает узнавать сигналы инициации и терминации синтеза и облегчает связывание РНК – полимеразы с матрицей.

РНК – полимераза представляет собой олигомерный фермент, ссостоящий из 5 субъединиц: альфа, альфа`, бета, бета`, гамма. Определенным субъединицам соответствуют определенные функции: например, бета – субъединица участвует в образовании фосфодиэфирной связи, гамма – субъединица участвует в распознавании стартового сигнала.

Участок ДНК, отвечающий за первоначальное связывание РНК – полимеразы, называется промотором, содержит 30 – 60 пар азотистых оснований.

Синтез РНК под действием ДНК – зависимой РНК – полимеразы происходит в 3 этапа: инициация, элонгация, терминация.

1)Инициация – гамма-субъединица, находясь в составе РНК – полимеразы, способствует не только «узнаванию» промоторных участков ДНК, но и непосредственно связывается в районе ТАТА – последовательности. Помимо того, что ТАТА – участок является сигналом для узнавания, он, возможно, обладает и наименьшей прочностью водородных связей, что облегчает «расплетание» нитей ДНК. Есть сведения, что в стимуляции этого процесса принимает участие и цАМФ. В раскрывании двойной спирали ДНК принимает участие и гамма-субъединица РНК – полимеразы. При этом одна из цепей ДНК служит матрицей для синтеза новой цепи РНК. И как только начинается этот синтез, гамма-субъединица отделяется от фермента, и, в дальнейшем, присоединяется к другой молекуле фермента, чтобы участвовать в новом цикле транскрипции. «Расплетение» ДНК происходит по мере продвижения РНК – полимеразы по кодирующей цепи. Оно необходимо для правильного образования комплиментарных пар со встраиваемыми в цепь РНК нуклеотидами. Размер расплетенного участка ДНК постоянен в течении всего процесса и составляет около 17 пар нуклеотидов на молекулу РНК – полимеразы. Одну и ту же кодирующую цепь могут одновременно считывать несколько молекул РНК – полимеразы, но процесс отрегулирован таким образом, что в каждый данный момент каждая молекула РНК – полимеразы транскрибирует различные участки ДНК. В то же время, для ДНК – зависимой РНК – полимеразы 3, синтезирующей тРНК, характерно «узнавание» внутреннего промотора.

2)Элонгация, или продолжение синтеза осуществляется РНК – полимеразой, но уже в виде тетрамера, т.к. гамма-субъединица уже отщепилась. Новая цепь растет путем последовательного добавления рибонуклеотидов к свободной 3` - оксигруппе. Скорость синтеза, например, иРНК сывороточного альбумина составляет до 100 нуклеотидов в секунду. В отличие от ДНК – полимеразы (о которой мы будем говорить ниже), РНК – полимераза не проверяет правильность новообразованной полинуклеотидной цепи. Частота ошибок при синтезе РНК составляет 1: 1000000.

3)Терминация – здесь принимает участие белковый фактор r (ро). Он не входит в состав РНК – полимеразы. Вероятно, он узнает терминаторную последовательность нуклеотидов на матрице по одному из механизмов взаимодействия гамма-субъединици и промотора. Терминатор также содержит около 30 – 60 пар нуклеотидов и заканчивается серией АТ – пар, хотя для некоторых РНК отмечено, что сигналы терминации отстоют от кодирующего гена на 1000 – 2000 оснований. Возможно, что и одна из частиц полимеразы участвует в узнавании терминаторной последовательности. При этом синтез РНК прекращается и молекула насинтезированного РНК сходит с фермента. Большая часть таким образом синтезируемых молекул РНК не является биологически активными. Скорее, они представляют собой предшественники, которые должны превратиться в зрелые формы в ходе различных реакций. Это называется процессинг. Такими реакциями являются: (1)Фрагментация длинноцепочечных предшественников (причем из одного транскрипта может образоваться от 1 до 3 тРНК). (2) Присоединение нуклеотидов к концам. (3) Специфическая модификация нуклеотидов (метилирование, сульфирование, дезаминирование и т.д.).

Процессинг мРНК имеет еще одну особенность. Оказалось, что иногда информация, кодирующая АК – последовательность в генах, прерывается некодирующими последовательностями, т.е. «гены разорван». Но при транскрипции копируется весь «разорванный» ген. В этом случае при процессинге эндонуклеазы, или их называют рестриктазой, вырезают некодирующие участки (интроны). Их выделено в настоящее время более 200. Рестриктазы расщепляют связи (в зависимости от вида фермента) между строго определенными нуклеотидаами (например Г – А, Т – А и т.д.). Затем лигазы сшивают кодирующие участки (экзоны). Большинство последовательностей, транскрипты которых представлены в зрелых мРНК разорваны в геноме от одного до 50 раз некодирующими участками (интронами). Как правило интроны значительно длиннее чем экзоны. Функции интронов точно не установлены. Возможно, они служат для физического разделения экзонов с целью оптимизации генетических перестроек (рекомбинаций). Существует и безматричный синтез РНК. Этот процесс катализирует фермент полинуклеотидфосфорилаза: нуклДФ + (нуклМФ)n (нуклМФ)n+1 + Фк. Этот фермент не требует матрицы и не синтезирует полимер со специфической полинуклеотидной последовательностью. Цепь РНК ему необходима лишь в качестве затравки. На процесс синтеза РНК ингибирующие влияние оказывает ряд антибиотиков (около 30). Здесь два механизма: (1) связывание с РНК-полимеразой, что приводит к инактивированию фермента (например рифамицин связывается с b- единицей). (2) Антибиотики могут связываться с матричной ДНК и блокировать либо соединение фермента с матрицей, либо перемещение РНК-полимеразы по ДНК (это, например, актиномицин Д).

Биосинтез ДНК.

Генетическая информация, заключенная в ДНК хромосомы может быть передана либо путем точной репликации, либо с помощью рекомбинации, транспозиции и конверсии:

1) Рекомбинация две гомологические хромосомы обмениваются генетическим материалом.


2) Транспозиция – способность перемещения генов по хромосоме или между хромосомами. Возможно, это играет важную роль в клеточной дифференцировке.

3) Конверсия - одинаковые последовательности хромосом могут формировать случайные пары, а несовпадающие участки удаляются.

4) Репликация (это основной вид синтеза ДНК), то есть воспроизведение «себе подобных».

Главное функциональное значение репликации – снабжение потомства генетической информацией. Основной фермент, катализирующий синтез ДНК – это ДНК-полимераза. Выделено несколько видов ДНК-полимеразы: 1) альфа – (выделена из ядра) – это основной фермент, связанный с репликацией хромосом. 2) бета – (так же локализована в ядре) – по-видимому, участвуют в репарации и процессах рекомбинации. 3) гамма – (локализованы в митохондриях) – вероятно, участвует в репликации митохондриальных ДНК. Для работы ДНК-полимеразы необходимы следующие условия: 1) в среде должны присутствовать все 4 дезоксирибонуклеотида (дАТФ, дГТФ, дЦТФ и ТТФ); 2) для оптимальной активности необходим ко-фактор: ионы марганца; 3) необходимо присутствие копируемой двухцепочечной ДНК; 4) нуклеотиды присоединяются в направлении 5` - 3` (5` - 3` - полимеризация); 5) репликация начинается в строго определенном участке и идет одновременно в обоих направлениях с примерно одинаковой скорость; 6) для начала синтеза может использоваться как затравочная порция либо фрагмент ДНК, либо фрагмент РНК, в отличие от синтеза РНК, где возможен синтез из отдельных нуклеотидов; 7) для репликации необходима суперспирализованная молекула ДНК. Но, если, как мы говорили выше, для транскрипции (то есть для синтеза РНК) необходимы РНК-полимераза (с гамма-субъединицей для узнавания и связывания с промотором) и белок узнования сигнала терминации (фактор r), при репликации ДНК действие ДНК полимеразы дополняют несколько (около 10) белков, часть которых представляют собой ферменты. Эти дополнительные белки способствуют:

1)узнавания точки начала репликации ДНК-полимеразой.

2) Локальному расплетанию дуплекса ДНК, что освобождает одиночные цепи для копирования матрицы.

3) Стабилизации расплавленной структуры (расплетенной).

4) Образование затравочных цепей для инициации действия ДНК-полимеразы.

5) Участвует в формировании и продвижении репликационной вилки.

6) Способствует узнаванию участков терминации.

7) Способствует суперспирализации ДНК.

Мы оговорили все необходимые условия репликации ДНК. И так, как уже упоминалось, репликация ДНК начинается в строго определенном месте. Для расплетания родительской ДНК требуется энергия, высвобождающаяся при гидролизе АТФ. На разделение каждой пары АО затрачивается две молекулы АТФ. Синтез новой ДНК сопряжен с одновременным раскручиванием родительской ДНК. Участок, где происходит одновременно расплетание и синтез, называется «репликационной вилкой»:


Родительская ДНК

Вновь синтезируемые ДНК

Репликация ДНК происходит таким образом, что каждая цепь родительской 2-цепочечной ДНК является матрицей для синтеза новой комплиментарной цепи и две цепи (исходная и вновь синтезируемая), соединяясь образуют следующие поколения ДНК. Этот механизм называют полуконсервативная репликация. Репликация ДНК проходит одновременно на 2 цепях, и идет, как уже упоминалось в направлении 5` - 3`. Но ведь цепи родительской ДНК разнонаправлены. Однако, фермента, ведущего синтез ДНК в направлении 3` - 5` нет. Поэтому, одна цепь, копирующая материнскую с направленностью 5` - 3`, будет синтезироваться непрерывно (ее называют «лидирующая»), вторая цепь будет синтезироваться тоже в направлении 5` - 3`, но фрагментами по 150 – 200 нуклеотидов, которые впоследствии сшиваются. Эту цепь называют «отстающая».

Для того, чтобы начался синтез новой ДНК необходима затравка. Мы уже говорили, что затравкой может быть фрагмент ДНК или РНК. Если затравкой служит РНК, то это очень короткая цепь, она содержит около 10 нуклеотидов и называется праймером. Синтезирует праймер, комплементарный одной из цепей ДНК, особый фермент – праймаза. Сигналом для активации праймазы служит образование предзатравочного промежуточного комплекса, состоящего из 5 белков. 3`-концевая группа (гидроксильная группа концевого рибонуклеотида праймера) и служит затравкой для синтеза ДНК под действием ДНК-полимеразы. После синтеза ДНК, РНК-компанент (праймер) гидролизуется под действием ДНК-полимеразы.

Работа ДНК-полимераз направляется матрицей, то есть нуклеотидный состав новосинтезированной ДНК зависит от характера матрицы. В свою очередь, ДНК-полимераза всегда удаляет некомплементарные остатки на конце затравки, прежде чем продолжать полимеризацию. Таким образом, репликация ДНК идет с большой точностью, так как спаривание оснований проверяется дважды. ДНК-полимеразы способны наращивать цепи вновь синтезируемых ДНК, но не способны катализировать соединение 2 цепей ДНК или замыкать одну цепь (при образовании кольцевой ДНК). Эти функции выполняет ДНК-лигаза, который катализирует образование фосфодиэфирной связи между 2 цепями ДНК. Фермент этот активен при наличии свободной – ОН-группы на 3` конце одной цепи ДНК и фосфатной группы на 5` конце другой цепи ДНК. Сшивание цепей происходит за счет энергии АТФ. Поскольку множество химических и физических агентов (ионизирующая радиация, УФЛ, различные химические вещества) вызывают в ДНК повреждение (изменяются или теряются АО, разрываются фосфодиэфирные связи и.д.), во всех клетках имеются механизмы для исправления этих повреждений. ДНК-рестриктаза находит эти повреждения и вырезает поврежденный участок, ДНК-полимераза проводит репарационный (восстановительный) синтез поврежденных участков в направлении 5` - 3`. Восстановленный участок сшивается с остатком цепи ДНК-лигазой. Этот метод исправления измененных или поврежденных участков называется репарацией. Список ингибиторов репликации ДНК многообразен и велик. Одни связываются с ДНК полимеразой, инактивируя ее, другие связываются и инактивируют определенный вспомогательный блок, третьи внедряются в матричную ДНК, нарушая ее спосоьность к копированию, четвертые выступают в роли конкурентных ингибиторов, представляя собой аналог нормальных нуклеотидтрифосфатов. Такими ингибиторами являются некоторые антибиотики, мутагены, химические яды, антивирусные агенты и т.д.

Биосинтез белка (трансляция генов).

Сборка полипептидной цепи из составляющих ее АК представляет собой удивительный и очень сложный процесс, который можно представить происходящим в 4 стадии, а именно:

1) активация и отбор АК (АТФ-зависимая стадия);

2) инициация синтеза полипептидной цепи (ГТФ-зависимая стадия);

3) элонгация полипептидной цепи (ГТФ-зависимая стадия);

4) терминация синтеза полипептидной цепи.

(1)– активация и отбор АК. Во всех типах клеток первой стадией трансляции является АТФ-зависимое превращение каждой АК в комплекс: аминоацил-тРНК. Этим достигается две цели:

1) повышается реакционная способность АК в плане образования пептидной связи.

2) АК соединяется со специфической тРНК (то есть происходит отбор). Реакция идет в 2 стадии + Mg++

1) АК + АТФ аминоацил – АМФ + ПФ

аминоацил-тРНК-синтетаза

2) аминоацил-АМФ + тРНК аминоацил-тРНК

аминоацил-тРНК-синтетаза

Аминоацил-тРНК-синтетаза катализирует присоединение аминоацила (аминокислотного остатка) к 3` гидроксильной группе концевого аденозина. Вспомним строение тРНК:

Это плечо необходимо это плечо участвует в связывании аминоацил-

Для узнования тРНК тРНК с рибосомой в месте синтеза белка.

Аминоацил-тРНК-

Петидазой


антикодон

Помимо каталитической активности, аминоацил-тРНК-синтетаза обладает очень высокой специфичностью, «узнавая» как аминокислоты, так и соответствующие им тРНК. Предполагается, что клетки содержат 20 синтетаз – по одной на каждую АК, в то время тРНК гораздо больше (не менее 31 -32), так как многие АК могут соединятся с двумя и даже с тремя различными молекулами тРНК.

(2)Инициация – вторая стадия синтеза белков.

Для начала трансляции необходимо точное узнавание первого кодона, расположенного сразу же за не транслируемой последовательностью мРНК. Инициаторным кодоном является АУГ, а инициатором выступает метионин-тРНК

МРНК не транслируемая транслируемая не транслируемая

последовательность последовательность последовательность


1-ый кодон.

Узнавание идет с помощью антикодона тРНК. Считывание происходит в направлении 5` - 3`. Это узнавание требует упорядоченного, идущего с затратой энергии (ГТФ) взаимодействия с диссоциированными рибосомами. Этот процесс происходит с участием дополнительных белков, которые называют факторы инициации (ФИ), их 8. В процессе участвуют 40S и 60S субъединиц рибосом. Рассмотрим подробный механизм инициации.

1) 40S – субъединица рРНК связывается с областью мРНК, предшествующей первому кодону. В этом принимает участие ФИ-3.

2) Первая аминоацил-тРНК, участвующая в трансляции первого кодона, взаимодействует с ГМФ и ФИ-2. Этот образовавшийся комплекс в присутствии ФИ-1 присоединяет тРНК к первому кодону матрицы и образует инициаторный комплекс с 40S субъединицей рибосомы.

3) После высвобождения всех факторов инициации (ФИ-1,2,3) к ГТФ присоединяется 60S субъединица рибосомы, при этом происходит гидролиз ГТФ. Так завершается образование полной 80S-частицы рибосомы. таким образом образуется полный инициаторный комплекс: рибосома – мРНК – тРНК.

Полностью собранная рибосома содержит 2 функциональных участка для взаимодействия с молекулами тРНК. Пептидильный участок (Р-участок) – содержит растущую полипептидную цепь в составе пептидил-тРНК в комплексе с последним протранслированным кодоном мРНК. Аминоацильный участок (А-участок) содержит аминоацил-тРНК, соединенную с соответствующим кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным для следующей Аминоацил-тРНК.

Схематично весь этот процесс мы можем представить так:

1)40S-субъединица рибосомы при участии ФИ-3 присоединяется к нетранслирующей последовательности мРНК непосредственно перед первым кодоном.

2)аминоацил-тРНК, соединяется с ГТФ и ФИ-2 и при участии ФИ-1 присоединяеся к первому кодону, при этом образует с 40S-субъединицей инициаторный комплекс.

3)происходит освобождение ФИ-1,2,3.

4) 60S-субъединица взаимодействует с ГТФ и затем присоединяется к инициаторному комплексу. Образуется полная 80S-рибосома, имеющая Р-участок и А-участок.

5)после образования инициаторного комплекса с первым кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным.

(3)Элонгация – продолжение синтеза. На этом этапе происходит удлинение пептидной цепи. В полностью сформированной на стадии инициации 80S-рибосома, А-участок свободен. По сути, в процессе элонгации постоянно повторяется цикл из 3 стадий:

1) Правильное расположение следующей аминоацил-тРНК.

2) образование пептидной связи.

3) перемещение новообразованной пептидил-тРНК из А-участка в Р-участок.

(1)– присоединение соответствующей (следующей) аминоацил-тРНК в А-участке требует точного узнавания кодона. Это происходит с помощью антикодона тРНК. Присоединение аминоацил-тРНК к рибосоме происходит благодаря образованию комплекса, состоящего из аминоацил-тРНК, ГТФ и белковых факторов элонгации (ФЭ), их тоже несколько. При этом высвобождается комплекс ФЭ – ГДФ и фосфат. Этот комплекс (ФЭ – ГДФ) затем (при участии ГТФ и других белковых факторов) вновь превращается в ФЭ – ГТФ.

(2) - альфа аминогруппа новой аминоацил-тРНК в участке А осуществляет нуклеофильную атаку эстерефицированной карбоксильной группы пептидил – тРНК, занимающей Р-участк. Эта реакция катализируется пептидилтрансферазой – белковым компонентом, входящим в состав 60S-субъединицы рибосомы. поскольку АК а аминоацил-тРНК уже активирована, для этой реакции (реакции образования пептидной связи) дополнительной энергии не требуется. В результате реакции растущая полипептидная цепь оказывается прикрепленной к тРНК, находящейся в А-участке.

(3) – после удаления пептдильного остатка с тРНК в Р-участки, свободная молекула РНК покидает Р-участок. Комплекс ФЭ-2 – ГТФ участвует в перемещении новообразованной пептидил-тРНК из А-участка в Р-участок, освобождая А-участок для нового цикла элонгации. Совокупность отделения деацилированной тРНК, передвижение новообразованной пептидил-тРНК из А-участка в Р-участок, а так же передвижение мРНК относительно рибосомы, называется транслокацией. Поскольку на образование аминоацил-тРНК затрачивалась энергия, получаемая при гидролизе АТФ до АМФ, а это эквивалентно энергии гидролиза 2АТФ до 2 АДФ; на присоединения аминоацил-тРНК к А-участку требовалась энергия, получаемая при гидролизе ГТФ до ГДФ, и еще одна молекула ГТФ затрачивалась на транслокацию. Мы можем подсчитать, что на образование одной пептидной связи нужна энергия, получаемая при гидролизе 2 молекул АТФ и 2 молекул ГТФ.

Скорость наращивания полипептидной цепи (то есть скорость элонгации) in vivo оценивается в 10 аминокислотных остатков в секунду. Эти процессы ингибируются разными антибиотиками. Так, пуромицин блокирует транслокацию, соединяясь с

Р-участком. Стрептомицин, связываясь с рибосомными белками, нарушает узнавание кодона антикодоном. Хлоромицитин связывается с А-участком, блокируя элонгацию. Схематично это можно представить так: 1) следующая аминоацил-тРНК благодаря узнаванию с помощью антикодона закрепляется в А-участке. Присоединение происходит в комплексе с ГТФ и ФЭ-1. при этом высвобождается ГДФ – ФЭ – 1 и Фк, который затем снова превращается в ГТФ – ФЭ-1 и принимает участие в новых циклах. 2) Происходит образование пептидой связи между присоединившейся аминоацил-тРНК и пептидом, находящемся в Р-участке. 3) При образовании этой пептидной связи от пептида отделяется тРНК и покидает Р-участок. 4) Новообразованный пептидил-тРНК с помощью комплекса ГТФ – ФЭ2 перемещается из А в Р-участок, а комплекс ГТФ – ФЭ2 гидролизуется до ГДФ – ФЭ-2 и Фк. 5) В результате этого перемещения А-участок освобождается для присоединения новой аминоацил-тРНК.

(4)-Терминация – заключительный этап синтеза белка. После многих циклов элонгации, в результате которых синтезируется полипептидная цепь белка, в

А-участке появляется терминирующий или нонсенс-кодон. В норме отсутствуют тРНК, способные узнать нонсенс-кодон. Их распознают специфические белки – факторы терминации (R-факторы). Они специфически узнают нонсенс-кодон, связываются с рибосомой вблизи А-участка, блокируя присоединение следующей аминоацил-тРНК. R-факторы при участии ГТФ и пептидилтрансферазы обеспечивают гидролиз связи между полипептидом и молекулой тРНК, занимающей Р-участок. После гидролиза и высвобождения полипептида и тРНК, 80S-рибосома диссоциирует на 40S и 60S субъединицы, которые затем могут вновь использоваться в трансляции новых мРНК.

Мы рассмотрели рост одной единственной цепи белка на одной рибосоме, присоединенной к одной молекуле мРНК. В действительности процесс протекает более эффективно, так как мРНК обычно транслируется одновременно не на одной рибосме, а на рибосомных комплексах (полисомах) и каждая стадия трансляции (инициация, элонгация, терминация) осуществляется при этом каждой рибосомой в этой полисоме, в этом рибосомальном комплексе, то есть появляется возможность синтеза нескольких копий полипептида, прежде чем мРНК будет расщеплена.

Размеры полисомных комплексов сильно варьируют и обычно определются размерами молекулы мРНК. Очень большие молекулы мРНК способны образовывать комплексы с 50 – 100 рибосомами. Чаще, однако,комплекс содержит от 3 до 20 рибосом.

В клетках животных и человека многие белки синтезируются по мРНК в виде молекул-предшественников, которые затем для образования активных молекул должны быть модифицированы, по аналогии с синтезом НК. В зависимости от белка могут происходить одна или большее число следующих модификаций.

1) Образование дисульфидной связи.

2) Присоединение ко-фактров и ко-ферментов.

3) Присоединение простетических групп.

4) Частичный протеолиз (проинсулин - инсулин).

5) Образование олигомеров.

6) Химическая модификация (ацилирование, аминирование, метилирование, фосфорилирование, карбоксилирование и т.д.) – известно более 150 химических модификаций АК в составе молекулы белка.

Все перечисленные модификации приводят к изменению структуры и активности белков.

Генетический код.

То что передача генетической информации ДНК происходит с помощью молекулы мРНК впервые предположили в 1961 году Ф.Жакоб и Ж.Моно. Последующие работы (М.Ниренберг, Х.Г.Корана, РУ.Холли):

М.Ниренберг – изучал синтез полипептидов и связывание аминоацил-тРНК с рибосомами.

Х.Г.Корана – разработал метод химического синтеза поли- и олигонуклеотидов.

Р.У.Холии – расшифровал структуру ДНК с антикодоновым участком.

1) Подтвердили гипотезу об участии мРНК

2) Показали триплетную природу кода, согласно которой каждая АК програмируется в мРНК 3 основаниями, названными кодоном

3) Установили, что код мРНК читается путем комплементарного узнавания кодоном антикодоновым триплетом тРНК.

4) Установили соответствие между АК и большинством из 64 возможных кодонов. В настоящее время известно что 61 кодон кодируют АК, а 3 являются сигналами терминации (нонсенс-кодон).

Считалось, что генетический код универсален, то есть для всех организмов и всех видов клеток одни и те же значения используются для всех кодонов. Однако, последние исследования митохондриальной ДНК показали, что генетическая система митохондрий в значительной мере отличается от генетической системы других образований (ядра, хлоропластов), то есть тРНК митохондрий некоторые кодоны считывают иначе, чем тРНК других образований. В результате для митохондрий необходимо только 22 вида тРНК. В то время, как для синтеза белка в цитоплазме используются 31 – 32 вида тРНК, то есть весь набор тРНК.

18 из 20 АК кодируются более чем одним кодоном (2, 3, 4, 6) – это свойство называется «вырожденностью» кода и имеет важное значение для организма. Вследствие вырожденности некоторые ошибки при репликации или транскрипции не вызывают искажения генетической информации. Генетический код не перекрывается и не имеет знаков пунктуации, то есть считывание идет без каких-либо пропусков, последовательно, до достижения нонсенс-кодона. В то же время для вирусов отмечено совершенно другое свойство – кодоны могут «перекрываться»:

1) Если замена приходится на 3-й нуклеотид кодона, то, вследствии «вырожденности» кода, существует вероятность того, что последовательность АК останется неизменной и мутация не проявится.

2) Может иметь место миссенс-эффект, когда одна АК заменяется другой; эта замена может быть приемлима, частично приемлима или неприемлима, то есть функция белка страдает, нарушается или полностью теряется.

3) В результате мутаций может образоваться нонсенс-кодон. Образование нонсенс-кодона (терминирующего кодона) может привести к преждевременной терминации синтеза белка.

Суммируя сказанное:

1) Генетически код («язык жизни») состоит из последовательности кодонов, которая, собственно и образует ген.

2) Генетический код обладает триплетностью, то есть каждый кодон состоит из трех нуклеотидов, то есть каждый кодон кодирует 1 АК. При этом из 4 видов нуклеотидов ДНК возможно образование 64 сочетаний, что более чем достаточно для 20 АК.

3) Код «вырожденный» - то есть одна АК может кодироваться 2, 3, 4, 6 кодонами.

4) Код однозначный, то есть один кодон кодирует только одну АК.

5) Код не перекрывающийся, то отсутствуют нуклеотиды, входящие в два соседние кодона.

6) Код «без запятых», то есть отсутствуют нуклеотиды между двумя соседними кодонами.

8) Последовательность АК в полипептиде соответствует последовательности кодонов в гене – это свойство называется коллинеарность.


Похожая информация.


Синтез ДНК, РНК и белков

Тема сегодняшней лекции – синтез ДНК, РНК и белков. Синтез ДНК называется репликацией или редупликацией (удвоением), синтез РНК – транскрипцией (переписывание с ДНК), синтез белка, проводимый рибосомой на матричной РНК называется трансляцией, то есть переводим с языка нуклеотидов на язык аминокислот.

Мы постараемся дать краткий обзор всех этих процессов, в то же время останавливаясь более подробно на молекулярных деталях, для того чтобы вы получили представление, на какую глубину этот предмет изучен.

Репликация ДНК

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.

Здесь также указан один из параметров ДНК, это шаг спирали, на каждый полный виток приходится 10 пар оснований, заметим, что один шаг – это не между ближайшими выступами, а через один, так как у ДНК есть малая бороздка и большая. Через большую бороздку с ДНК взаимодействуют белки, которые распознают последовательность нуклеотидов. Шаг спирали равен 34 ангстрем, а диаметр двойной спирали – 20 ангстрем.

Репликацию ДНК осуществляет фермент ДНК-полимераза. Этот фермент способен наращивать ДНК только на 3΄– конце. Вы помните, что молекула ДНК антипараллельна, разные ее концы называются 3΄-конец и 5΄ - конец. При синтезе новых копий на каждой нити одна новая нить удлиняется в направлении от 5΄ к 3΄ , а другая – в направлении от 3΄ к 5-концу. Однако 5΄ конец ДНК-полимераза наращивать не может. Поэтому синтез одной нити ДНК, той, которая растет в "удобном" для фермента направлении, идет непрерывно (она называется лидирующая или ведущая нить), а синтез другой нити осуществляется короткими фрагментами (они называются фрагментами Оказаки в честь ученого, который их описал). Потом эти фрагменты сшиваются, и такая нить называется запаздывающей, в целом репликация этой нити идет медленней. Структура, которая образуется во время репликации, называется репликативной вилкой.

Если мы посмотрим в реплицирующуюся ДНК бактерии, а это можно наблюдать в электронном микроскопе, мы увидим, что у нее вначале образуется "глазок", затем он расширяется, в конце концов вся кольцевая молекула ДНК оказывается реплицированной. Процесс репликации происходит с большой точностью, но не абсолютной. Бактериальная ДНК-полимераза делает ошибки, то есть вставляет не тот нуклеотид, который был в матричной молекуле ДНК, примерно с частотой 10-6. У эукариот ферменты работают точнее, так как они более сложно устроены, уровень ошибок при репликации ДНК у человека оценивается как 10-7 – 10 -8 . Точность репликации может быть разной на разных участках геном, есть участки с повышенной частотой мутаций и есть участки более консервативные, где мутации происходят редко. И в этом следует различать два разных процесса: процесс появления мутации ДНК и процесс фиксации мутации. Ведь если мутации ведут к летальному исходу, они не проявятся в следующих поколениях, а если ошибка не смертельна, она закрепится в следующих поколениях, и мы сможем ее проявление наблюдать и изучить. Еще одной особенностью репликации ДНК является то, что ДНК-полимераза не может начать процесс синтеза сама, ей нужна «затравка». Обычно в качестве такой затравки используется фрагмент РНК. Если речь идет о геноме бактерии, то там есть специальная точка называемая origin (исток, начало) репликации, в этой точке находится последовательность, которая распознается ферментом, синтезирующим РНК. Он относится к классу РНК-полимераз, и в данном случае называется праймазой. РНК-полимеразы не нуждаются в затравках, и этот фермент синтезирует короткий фрагмент РНК – ту самую «затравку», с которой начинается синтез ДНК.

Транскрипция

Следующий процесс – транскрипция. На нем остановимся подробнее.

Транскрипция – синтез РНК на ДНК, то есть синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. У бактерий, например, кишечной палочки – одна РНК-полимераза, и все бактериальные ферменты очень похожи друг на друга; у высших организмов (эукариотов) – несколько ферментов, они называются РНК-полимераза I, РНК-полимераза II, РНК-полимераза III, они также имеют сходство с бактериальными ферментами, но устроены сложнее, в их состав входит больше белков. Каждый вид эукариотической РНК-полимеразы обладает своими специальными функциями, то есть транскрибирует определенный набор генов. Нить ДНК, которая служит матрицей для синтеза РНК при транскрипции называется смысловой или матричной. Вторая нить ДНК называется некодирующей (комплементарная ей РНК не кодирует белки, она "бессмысленная").

В процессе транскрипции можно выделить три этапа. Первый этап - инициация транскрипции – начало синтеза нити РНК, образуется первая связь между нуклеотидами. Затем идет наращивание нити, ее удлинение – элонгация, и, когда синтез завершен, происходит терминация, освобождение синтезированной РНК. РНК-полимераза при этом «слезает» с ДНК и готова к новому циклу транскрипции. Бактериальная РНК-полимераза изучена очень подробно. Она состоит из нескольких белковых-субъединиц: двух α-субъединиц (это маленькие субъединицы), β- и β΄-субъединиц (большие субъединицы) и ω-субъединицы. Вместе они образуют так называемый минимальный фермент, или кор-фермент. К этому кор-ферменту может присоединяться σ-субъединица. σ-субъединица необходима для начала синтеза РНК, для инициации транскрипции. После того, как инициация осуществилась, σ-субъединица отсоединяется от комплекса, и дальнейшую работу (элонгацию цепи) ведет кор-фермент. При присоединении к ДНК σ-субъединица распознает участок, на котором должна начинаться транскрипция. Он называется промотор. Промотор - это последовательность нуклеотидов, указывающих на начало синтеза РНК. Без σ-субъединицы кор-фермент промотор распознать не может. σ-субъединица вместе с кор-ферментом называется полным ферментом, или холоферментом.

Связавшись с ДНК, а именно с промотором, который распознала σ-субъединица, холофермент расплетает двунитевую спираль и начинает синтез РНК. Участок расплетенной ДНК – это точка инициации транскрипции, первый нуклеотид, к которому должен комплементарно быть присоединен рибонуклеотид. Инициируется транскрипция, σ-субъединица уходит, а кор-фермент продолжает элонгацию цепи РНК. Затем происходит терминация, кор-фермент освобождается и становится готов к новому циклу синтеза.

Как происходит элонгация транскрипции?

РНК наращивается на 3΄-конце. Присоединением каждого нуклеотида кор-фермент делает шаг по ДНК и сдвигается на один нуклеотид. Так как все в мире относительно, то можно сказать, что кор-фермент неподвижен, а сквозь него «протаскивается» ДНК. Понятно, что результат будет таким же. Но мы будем говорить о движении по молекуле ДНК. Размер белкового комплекса, составляющего кор-фермент, 150 Ǻ. Размеры РНК-полимеразы - 150×115×110Ǻ. То есть это такая наномашина. Скорость работы РНК-полимеразы – до 50 нуклеотидов в секунду. Комплекс кор-фермента с ДНК и РНК называется элонгационным комплексом. В нем находится ДНК-РНК гибрид. То есть это участок, на котором ДНК спарена с РНК, и 3΄-конец РНК открыт для дальнейшего роста. Размер этого гибрида – 9 пар оснований. Расплетенный участок ДНК занимает примерно 12 пар оснований.

РНК-полимераза связанна с ДНК перед расплетенным участком. Этот участок называется передним дуплексом ДНК, его размер – 10 пар оснований. Полимераза связана также с более длинной частью ДНК, называемой задним дуплексом ДНК. Размер матричных РНК, которые синтезируют РНК-полимеразы у бактерий, могут достигать 1000 нуклеотидов и больше. В эукариотических клетках размер синтезируемых ДНК может достигать 100000 и даже нескольких миллионов нуклеотидов. Правда, неизвестно, существуют ли они в таких размерах в клетках, или в процессе синтеза они могут успеть процессировать.

Элонгационный комплекс довольно стабилен, т.к. он должен выполнить большую работу. То есть, сам по себе он с ДНК не «свалится». Он способен перемещаться по ДНК со скоростью до 50 нуклеотидов в секунду. Этот процесс называется перемещение (или, транслокация). Взаимодействие ДНК с РНК-полимеразой (кор-ферментом) не зависит от последовательности этой ДНК, в отличие от σ-субъединицы. И кор-фермент при прохождении определенных сигналов терминации завершает синтез ДНК.

Разберем более подробно молекулярную структуру кор-фермента. Как было сказано выше, кор-фермент состоит из α- и β-субъединиц. Они соединены так, что образуют как бы «пасть» или «клешню». α-субъединицы находятся в основании этой «клешни», и выполняют структурную функцию. С ДНК и РНК они, по-видимому, не взаимодействуют. ω-субъединица – небольшой белок, который также выполняет структурную функцию. Основная часть работы приходится на долю β- и β΄-субъединиц. На рисунке β΄-субъединица показана наверху, а β-субъединица - внизу.

Внутри «пасти», которая называется главным каналом, находится активный центр фермента. Именно здесь происходит соединение нуклеотидов, образование новой связи при синтезе РНК. Главный канал в РНК-полимеразе – это то место, где во время элонгации находится ДНК. Еще в этой структуре сбоку есть так называемый вторичный канал, по которому подаются нуклеотиды для синтеза РНК.

Распределение зарядов на поверхности РНК-полимеразы обеспечивает ее функции. Распределение очень логично. Молекула нуклеиновой кислоты заряжена отрицательно. Поэтому полость главного канала, где должна удерживаться отрицательно заряженная ДНК, выложена положительными зарядами. Поверхность РНК-полимеразы выполнена отрицательно заряженными аминокислотами, чтобы ДНК к ней не прилипала.

РНК-полимераза работает как молекулярная машина, и в ней есть различные детали, каждая из которых выполняет свою функцию. Например, нависающая над "пастью" часть β΄- субъединицы удерживает передний ДНК-дуплекс. Эта часть называется "заслонкой". После связывания с ДНК заслонка опускается, проходя путь в 30 ангстрем, и зажимает ДНК так, чтобы она не могла выпасть в процессе транскрипции.

внутри "пасти" находится активный центр РНК-полимеразы, то есть то место, где непосредственно происходит комплементарное взаимодействие поступившего по боковому каналу рибонуклеоиздтрифосфата с ДНК-матрицей. Если вновь прибывший нуклеотид комплементарен матрице, то он ферментативно пришивается к свободному 3" –концу РНК. По характеру реакция образования новой связи в РНК относится к реакциям нуклеофильного замещения. В ней участвуют два иона магния. Один ион постоянно находится в активном центре, а второй ион магния поступает с нуклеотидом и после образования новой связи между рибонуклеотидами уходит, затем поступает новый нуклеотид со своим новым ионом магния.

При выходе из РНК-полимеразы ДНК-РНК гибрид должен быть расплетен. В этом участвует структура, называемая "шип".

В транслокации, то есть перемещении РНК-полимеразы по нити ДНК, участвует α-спиральная структура, снизу вверх торчащая из β-субъединицы.

Как же узнали, какая часть фермента какую роль выполняет. Молекулярные биологи поступают следующим образом. Они удаляют часть белковой последовательности и смотрят, какая функция исчезла. Было показано, что если выбросить фрагмент зажима (когда его выбрасывали, еще не знали, что он держит ДНК), то ДНК держаться не будет. Такой же результат получается, если удалить ДНК переднего дуплекса. Оставшаяся часть - РНК-ДНК гибрид и задний дуплекс – оказываются слабо связанными с РНК-полимеразой.

Известно, что магний координирует связь между фосфатами растущей молекулы ДНК и фосфатами вновь входящих нуклеотидов. При этом происходит последовательность реакций, называемых реакциями нуклеофильного замещения. Известно, каким образом меняются связи внутри этого комплекса. Новый нуклеотид приходит, будучи связанным с еще одним ионом магния. Новый нуклеотид таким образом взаимодействует с растущей цепью ДНК. В конце реакции, второй ион магния выводится из активного центра фермента.

РНК-полимераза является представителем молекулярных машин. Помимо того, что в начале синтеза ДНК опускается заслонка, меняется конформация других частей РНК-синтазы, в ней во время роста цепи РНК происходят циклические изменения, не такие сильные, как при начале синтеза цепи. В начале заслонка опускается на 30 Ǻ, а при каждом шаге фермента ДНК протягивается на один нуклеотид. В перемещении по ДНК участвует элемент РНК-полимеразы F-спираль (альфа-спиральная структуры, точащая из бета-субъединицы вверх в главный канал). F-спираль при этом изгибается, перемещается вместе с комплексом РНК-ДНК, освобождается от них и опять выпрямляется. Перемещается F-спираль за один шаг на 3,4 Ǻ. Именно такой шаг у РНК-полимеразы.

Изменение конформации различных частей РНК-полимеразы происходит за счет изменения потенциальной энергии, что связано с электростатическими и гидрофобными взаимодействиями. Можно провести следующую аналогию. Если взять поднос с горкой яблок, то после того, как мы этот поднос потрясем, яблоки будут рассыпаться ровным слоем по подносу. У них при этом изменится потенциальная энергия, связанная с действием силы тяжести. Если молекулу РНК-синтазы «потрясти» (а «трясет» ее, также как и все другие молекулы в клетке, броуновское движение), то она начнет принимать конформацию с более низкой потенциальной энергией. То есть, источником движения молекулярной машины является энергия теплового движения отдельных ее составляющих, а устройство машины таково, что это движение приводит к нужному результату. При этом молекулярная машина потребляет энергию, которая, в основном, идет на изменение состояния тех или иных связей.

Сейчас остановимся на инициации транскрипции. Как уже говорилось, инициация осуществляется с участием σ-субъединицей. Она взаимодействует со структурой ДНК, которая называется промотор. Она имеет у кишечной палочки такую структуру. За десять нуклеотидов до точки инициации находится ТАТА-бокс. Не обязательно стоит именно такая последовательность, но она является "идеальной" последовательностью для взаимодействия с σ-субъединицей, то есть такой, с которой транскрипция инициируется наиболее эффективно. Замена отдельных нуклеотидов в этой последовательности снижает эффективность инициации транскрипции. Еще примерно за 35 нуклеотидов до него находится структура, называемая «-35». Эту последовательность также распознает σ-субъединица. Эту структуру (сочетание последовательностей "–10" и "–35") назвали классическим промотором, т.к. она была описана первой. Но оказалось, что устройство промотора может быть и другим. Этот вариант включает в себя тот же ТАТА-бокс, но нет последовательности «-35», однако есть дополнительно два нуклеотида, и этого достаточно, чтобы σ-субъединица распознала промотор.

Эта структура называется расширенным промотором. σ-субъединица РНК-полимеразы садится на промотор в ДНК и разными частями белковой молекулы взаимодействует с частями промотора. Распознает его σ-субъединица через большую бороздку ДНК. После того, как σ-субъединица в составе кор-фермента связалась с промотором, ДНК на этом участке начинает плавиться (расплетаются нити ДНК). На прошлой лекции обсуждалось, что в паре А-Т связи между нуклеотидами разрываются легче, чем в паре Г-Ц, так как последняя содержит 3 водородных связи, а первая – две. Промотор содержит пары А-Т, поэтому плавится он достаточно легко. И затем начинается синтез РНК, растущая цепь РНК выталкивает σ-субъединицу и происходят еще другие изменения, которые вызывают диссоциацию σ-субъединицы от кор-фермента.

Теперь приведем пример, как изучают функции разных частей белка. Если небольшой кусочек белка отрезать и посмотреть, как изменились функции белка, то можно понять, какие были функции у отрезанного кусочка. В нашем случае сделали по-другому. Взяли две ДНК-полимеразы, одну взяли из кишечной палочки, а другую – из теплолюбивой бактерии (термофильной), которая растет при 800 С, (в лабораторных условиях их растят в колбе, которая находится в термостате в почти кипящей воде, в естественных условиях они живут в горячих источниках, есть такие, которые могут жить при 98оС), следовательно оптимум работы ее РНК-полимеразы и σ-субъединицы – 80оС, (на рисунке σ-субъединица термофильной бактерии показана красным, а кишечной палочки - желтым), а у кишечной палочки наиболее эффективная работа идет при температуре человеческого тела, (так как она живет в кишечнике). У ее σ-субъединицы всего четыре части, разрезали белок и сшивали эту σ-субъединицу с кусочком от σ-субъединицы термофильной бактерии. И потом разные кусочки от термофильной бактерии вставляли, заменяя ими разные фрагменты σ-субъединицы. Затем смотрели, активен ли полученный гибридный белок при 200 С или нет. Термофильная бактерия при такой температуре не работает, для нее это слишком холодно, а кишечная палочка активна. На рисунке видно, что при данной температуре работает только та комбинация, при которой у σ-субъединицы первая и вторая часть от кишечной палочки, а третья и четвертая от термофильной бактерии. Таким образом, делают вывод, что температуру работы σ-субъединицы определяют первая и вторая составные части.

На самом деле разрезают не белок, а ДНК, потом кусочки ДНК от разных бактерий сшивают вместе и затем вводят в бактерию, там при активизации этой части ДНК синтезируется гибридный белок. Эта технология относится к генной инженерии, она была разработана в 70-х годах.

Еще одной особенностью транскрипции является то, что кор-фермент бактериальной клетки один и тот же, а σ-субъединицы могут быть разными. У кишечной палочки всего 7 σ-субъединиц, они узнают разные промоторы. Зачем это нужно? Если клетке срочно нужно переключить синтез белков с одной группы генов на другую, она может использовать разные σ-субъединицы. Например, есть гены теплового шока, если кишечную палочку подогреть до состояния, когда жить ей станет очень тяжело, она включает аварийную систему сопротивления тепловому шоку, сопротивления тем разрушениям, которые произошли в клетке. В эту систему входит тот набор генов, который в норме работать не должен, перед этими генами свой особый промотор. И тогда другая σ-субъединица, не основная, синтезируется и активирует эти гены. То есть смена субъединицы – это смена программы работы генов. Это способ регуляции работы генов.

Трансляция

Перейдем к трансляции – синтезу белков. Она проводится рибосомами. Рибосома состоит из двух субчастиц: большой и малой.

Каждая субчастица состоит из нескольких десятков белков, каждый из которых уже изучен, известно, каким образом каждый белок уложен в субчастицу. При исследовании белков используют метод электрофореза, то есть в электрическом поле в специальном геле или специальном носителе молекулы белков разъединяются в зависимости от их заряда и молекулярного веса, то есть под действием поля они начинают двигаться и могут отодвигаться друг от друга на разное расстояние. Другим методом разделения белков является хроматография, в результате этого метода на носителе получают пятнышки, каждый из которых соответствует отдельному белку.

Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее в определенном порядке начинают налипать белки. На рисунке представлена рибосомная РНК. В ней самокомплементарные участки нити РНК спариваются, образуя шпильки (вторичная структура), и затем РНК сворачивается (третичная структура РНК), образуя каркас субчастиц.

Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомногй или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три "стебля" с петлями на концах и один "стебель", образованный 5"- и 3"-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. "Голова" на этом листе представлена антикодонной петлей, здесь находится антикодо – те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем – сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.

В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).

Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза - на один.

Аминоцил т-РНК входит в рибосому, комплементарно связываясь с кодоном мРНК, затем происходит реакция при которой аминокислотные остатки связываются друг с другом, а т-РНК удаляется.

"Словарь" для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом. Аминокислот - 20, нуклеотидов – 4, число комбинаций из 4 по 2 = 16, а аминокислот 20, поэтому кодировка не двух, а трехбуквенная, каждая тройка называется кодоном. Каждая аминокислота кодируется тремя нуклеотидами в мРНК (которая, в свою очередь, кодируется ДНК).

В таблице на рисунке боковые столбцы кодируют левую и правую букву кодона, верхняя строка – среднюю. Например кодон AUG кодирует аминокислоту метионин. Число комбинаций из 4 по 3 = 64, то есть некоторые аминокислоты кодируются несколькими кодонами. Три кодона не кодируют никакую аминокислоту, они называются терминирующими. Когда они попадаются в мРНК, рибосома прекращает свою работу и готовая полипептидная цепь выбрасывается наружу.

Таблица генетического кода была составлена в 60-х годах. Начало положили Ниренберг и Маттеию. Они пытались производить в пробирке эксперименты на клеточных экстрактах, к которым были добавлены искусственные матрицы РНК. В то время считалось, что кодоны, состоящие из одного нуклеотида (UUU или ААА) не кодируют аминокислоты. Ниренберг и Маттеи использовали полиU-РНК (то есть состоящую только из урацилов) в качестве контроля в своих опытах, но именно в этой пробирке прошла реакция. Стало ясно, что кодон UUU кодирует аминокислоту фенилаланин. Затем была составлена таблица генетического кода.

Генетический код универсален. Он один и тот же у всех микроорганизмов. Есть небольшие отличия в генетическом коде митохондрий.

Генетическим кодом называется таблица соответствия кодонов аминокислотам. Когда журналисты пишут о том, что недавно расшифрован генетический код человека – это грубая терминологическая ошибка. Генетический код человека расшифрован тогда же, когда и всех остальных живых существ – в 60-х годах XX века. Недавно расшифрован геном человека, то есть полная последовательность нуклеотидов всех молекул ДНК.

В лекции использованы изображения РНК-полимеразы, предоставленные Андреем Кульбачинским (Институт молекулярной генетики РАН).

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://bio.fizteh.ru

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК) . Структура ДНК дала ключ к механизму точного воспроизведения - редупликации - генного вещества . Так возникла новая наука - молекулярная биология. Была сформулирована так называемая центральная догма молекулярной биологии: ДНК - РНК - белок. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а через посредство родственного полимера - рибонуклеиновую кислоту (РНК), и этот путь от нуклеиновых кислот к белкам необратим. Таким образом, ДНК синтезируется на ДНК, обеспечивая собственную редупликацию, то есть воспроизведение исходного генетического материала в поколениях; РНК синтезируется на ДНК, в результате чего происходит переписывание, или транскрипция, генетической информации в форму многочисленных копий РНК; молекулы РНК служат матрицами для синтеза белков - генетическая информация транслируется в форму полипептидных цепей. В специальных случаях РНК может переписываться в форму ДНК ("обратная транскрипция"), а также копироваться в виде РНК (репликация), но белок никогда не может быть матрицей для нуклеиновых кислот (подробнее см. ).

Итак, именно ДНК определяет наследственность организмов, то есть воспроизводящийся в поколениях набор белков и связанных с ними признаков. Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой - механизмом точного воспроизведения этой программы в поколениях. Следовательно, происхождение жизни в ее современной клеточной форме сводится к возникновению механизма наследуемого биосинтеза белков.

БИОСИНТЕЗ БЕЛКОВ

Центральная догма молекулярной биологии постулирует лишь путь передачи генетической информации от нуклеиновых кислот к белкам и, следовательно, к свойствам и признакам живого организма. Изучение механизмов реализации этого пути на протяжении десятилетий, последовавших за формулировкой центральной догмы, вскрыло гораздо более разнообразные функции РНК, чем быть только переносчиком информации от генов (ДНК) к белкам и служить матрицей для синтеза белков.

На рис. 1 представлена общая схема биосинтеза белка в клетке. РНК-посредник (messenger RNA, матричная РНК, мРНК), кодирующая белки, о которой и шла речь выше, - это лишь один из трех главных классов клеточных РНК. Основную их массу (около 80%) составляет другой класс РНК - рибосомные РНК , которые образуют структурный каркас и функциональные центры универсальных белок-синтезирующих частиц - рибосом. Именно рибосомные РНК ответственны - как в структурном, так и в функциональном отношении - за формирование ультрамикроскопических молекулярных машин, называемых рибосомами. Рибосомы воспринимают генетическую информацию в виде молекул мРНК и, будучи запрограммированы последними, делают белки в точном соответствии с данной программой.

Однако, чтобы синтезировать белки, одной только информации или программы недостаточно - нужен еще и материал, из которого их можно делать. Поток материала для синтеза белков идет в рибосомы через посредство третьего класса клеточных РНК - РНК-переносчиков (transfer RNA, транспортные РНК, тРНК). Они ковалентно связывают - акцептируют - аминокислоты, которые служат строительным материалом для беЛков, и в виде аминоацил-тРНК поступают в рибосомы. В рибосомах аминоацил-тРНК взаимодействуют с кодонами - трехнуклеотидными комбинациями - мРНК, в результате чего и происходит декодирование кодонов в процессе трансляции.

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ

Итак, перед нами набор главных клеточных РНК, определяющих основной процесс современной живой материи - биосинтез белка. Это мРНК, рибосомные РНК и тРНК. РНК синтезируются на ДНК с помощью ферментов - РНК-полимераз, осуществляющих транскрипцию - переписывание определенных участков (линейных отрезков) двутяжевой ДНК в форму однотяжевой РНК. Участки ДНК, кодирующие клеточные белки, переписываются в виде мРНК, тогда как для синтеза многочисленных копий рибосомной РНК и тРНК имеются специальные участки клеточного генома, с которых идет интенсивное переписывание без последующей трансляции в белки.

Химическая структура РНК. Химически РНК очень похожа на ДНК. Оба вещества - это линейные полимеры нуклеотидов. Каждый мономер - нуклеотид - представляет собой фосфорилированный N-гликозид, построенный из остатка пятиуглеродного сахара - пентозы, несущего фосфатную группу на гидроксильной группе пятого углеродного атома (сложноэфирная связь) и азотистое основание при первом углеродном атоме (N-гликозидная связь). Главное химическое различие между ДНК и РНК состоит в том, что сахарный остаток мономера РНК - это рибоза, а мономера ДНК - дезоксирибоза, являющаяся производным рибозы, в котором отсутствует гидроксильная группа при втором углеродном атоме (рис. 2).

Азотистых оснований и в ДНК, и в РНК четыре вида: два пуриновых - аденин (А) и гуанин (G) -и два пиримидиновых - цитозин (С) и урацил (U) или его метилированное производное тимин (Т).

Урацил характерен для мономеров РНК, а тимин - для мономеров ДНК, и это второе различие РНК и ДНК. Мономеры - рибонуклеотиды РНК или дезоксирибонуклеотиды ДНК - образуют полимерную цепь посредством формирования фосфодиэфирных мостиков между сахарными остатками (между пятым и третьим атомами углерода пентозы). Таким образом, полимерная цепь нуклеиновой кислоты - ДНК или РНК - может быть представлена как линейный сахаро-фосфатный остов с азотистыми основаниями в качестве боковых групп.

Макромолекулярная структура РНК. Принципиальное макроструктурное различие двух типов нуклеиновых кислот состоит в том, что ДНК - это единая двойная спираль, то есть макромолекула из двух комплементарно связанных полимерных тяжей, спирально закрученных вокруг общей оси (см. [ , ]), а РНК - однотяжевой полимер. В то же время взаимодействия боковых групп - азотистых оснований - друг с другом, а также с фосфатами и гидроксилами сахаро-фосфатного остова приводят к тому, что однотяжевой полимер РНК сворачивается на себя и скручивается в компактную структуру , подобно сворачиванию полипептидной цепи белка в компактную глобулу. Таким способом уникальные нуклеотидные последовательности РНК могут формировать уникальные пространственные структуры.

Впервые специфическая пространственная структура РНК была продемонстрирована при расшифровке атомной структуры одной из тРНК в 1974 г. [ , ] (рис. 3). Сворачивание полимерной цепи тРНК, состоящей из 76 нуклеотидных мономеров, приводит к формированию очень компактного глобулярного ядра, из которого под прямым углом торчат два выступа. Они представляют собой короткие двойные спирали по типу ДНК, но организованные за счет взаимодействия участков одной и той же цепи РНК. Один из выступов является акцептором аминокислоты и участвует в синтезе полипептидной цепи белка на рибосоме, а другой предназначен для комплементарного взаимодействия с кодирующим триплетом (кодоном) мРНК в той же рибосоме. Только такая структура способна специфически взаимодействовать с белком-ферментом, навешивающим аминокислоту на тРНК, и с рибосомой в процессе трансляции, то есть специфически "узнаваться" ими.

Изучение изолированных рибосомных РНК дало следующий разительный пример формирования компактных специфических структур из еще более длинных линейных полимеров этого типа. Рибосома состоит из двух неравных частей - большой и малой рибосомных субчастиц (субъединиц). Каждая субчастица построена из одной высокополимерной РНК и целого ряда разнообразных рибосомных белков. Длина цепей рибосомных РНК весьма значительна: так, РНК малой субчастицы бактериальной рибосомы содержит более 1500 нуклеотидов, а РНК большой субчастицы - около 3000 нуклеотидов. У млекопитающих, включая человека, эти РНК еще больше - около 1900 нуклеотидов и более 5000 нуклеотидов в малой и большой субчастицах соответственно.

Было показано, что изолированные рибосомные РНК, отделенные от их белковых партнеров и полученные в чистом виде, сами способны спонтанно сворачиваться в компактные структуры, по своим размерам и форме похожие на рибосомные субчастицы ]. Форма большой и малой субчастиц разная, и соответственно различается форма большой и малой рибосомных РНК (рис. 4). Таким образом, линейные цепи рибосомной РНК самоорганизуются в специфические пространственные структуры, определяющие размеры, форму и, по-видимому, внутреннее устройство рибосомных субчастиц, а следовательно, и всей рибосомы.

Минорные РНК. По мере изучения компонентов живой клетки и отдельных фракций тотальной клеточной РНК выяснялось, что тремя главными видами РНК дело не ограничивается. Оказалось, что в природе существует множество других видов РНК. Это, в первую очередь, так называемые "малые РНК", которые содержат до 300 нуклеотидов, часто с неизвестными функциями. Как правило, они ассоциированы с одним или несколькими белками и представлены в клетке в виде рибонуклеопротеидов - "малых РНП" .

Малые РНК присутствуют во всех отделах клетки, включая цитоплазму, ядро, ядрышко, ми-тохондрии. Большая часть тех малых РНП, функции которых известны, участвует в механизмах посттранскрипционной обработки главных видов РНК (RNA processing) - превращении предшественников мРНК в зрелые мРНК (сплайсинг), редактировании мРНК, биогенезе тРНК, созревании рибосомных РНК. Один из наиболее богато представленных в клетках видов малых РНП (SRP) играет ключевую роль в транспорте синтезируемых белков через клеточную мембрану. Известны виды малых РНК, выполняющих регуляторные функции в трансляции. Специальная малая РНК входит в состав важнейшего фермента, ответственного за поддержание редупликации ДНК в поколениях клеток - теломеразы. Следует сказать, что их молекулярные размеры сопоставимы с размерами клеточных глобулярных белков. Таким образом, постепенно становится ясно, что функционирование живой клетки определяется не только многообразием синтезируемых в ней белков, но и присутствием богатого набора разнообразных РНК, из которых малые РНК в значительной мере имитируют компактность и размеры белков.

Рибозимы. Вся активная жизнь построена на обмене веществ - метаболизме, и все биохимические реакции метаболизма происходят с надлежащими для обеспечения жизни скоростями только благодаря высокоэффективным специфическим катализаторам, созданным эволюцией. На протяжении многих десятилетий биохимики были уверены, что биологический катализ всегда и всюду осуществляется белками, называемыми ферментами , или энзимами. И вот в 1982-1983 гг. было показано, что в природе имеются виды РНК, которые, подобно белкам, обладают высокоспецифической каталитической активностью [ , ]. Такие РНК-катализаторы были названы рибозимами. Представлению об исключительности белков в катализе биохимических реакций пришел конец.

В настоящее время рибосому тоже принято рассматривать как рибозим. Действительно, все имеющиеся экспериментальные данные свидетельствуют о том, что синтез полипептидной цепи белка в рибосоме катализируется рибосомной РНК, а не рибосомными белками. Идентифицирован каталитический участок большой рибосомной РНК, ответственный за катализ реакции транспептидации, посредством которой осуществляется наращивание полипептидной цепи белка в процессе трансляции.

Что касается репликации вирусных ДНК, то ее механизм мало чем отличается от редупликации генетического материала - ДНК - самой клетки. В случае же вирусных РНК реализуются процессы, которые подавлены или вовсе отсутствуют в нормальных клетках, где вся РНК синтезируется только на ДНК как на матрице. При инфекции РНК-содержащими вирусами ситуация может быть двоякой. В одних случаях на вирусной РНК как на матрице синтезируется ДНК ("обратная транскрипция"), а уж на этой ДНК транскрибируются многочисленные копии вирусной РНК. В других, наиболее интересных для нас случаях на вирусной РНК синтезируется комплементарная цепь РНК, которая и служит матрицей для синтеза - репликации - новых копий вирусной РНК. Таким образом при инфекции РНК-содержащими вирусами реализуется принципиальная способность РНК детерминировать воспроизведение своей собственной структуры, как это имеет место у ДНК.

Мультифункциональность РНК. Суммирование и обзор знаний о функциях РНК позволяют говорить о необыкновенной многофункциональности этого полимера в живой природе. Можно дать следующий список основных известных функций РНК.

Генетическая репликативная функция: структурная возможность копирования (репликации) линейных последовательностей нуклеотидов через комплементарные последовательности. Функция реализуется при вирусных инфекциях и аналогична главной функции ДНК в жизнедеятельности клеточных организмов - редупликации генетического материала.

Кодирующая функция: программирование белкового синтеза линейными последовательностями нуклеотидов. Это та же функция, что и у ДНК. И в ДНК, и в РНК одни и те же триплеты нуклеотидов кодируют 20 аминокислот белков, и последовательность триплетов в цепи нуклеиновой кислоты есть программа для последовательной расстановки 20 видов аминокислот в полипептидной цепи белка.

Структурообразующая функция: формирование уникальных трехмерных структур. Компактно свернутые молекулы малых РНК принципиально подобны трехмерным структурам глобулярных белков, а более длинные молекулы РНК могут образовывать и более крупные биологические частицы или их ядра.

Функция узнавания: высокоспецифические пространственные взаимодействия с другими макромолекулами (в том числе белками и другими РНК) и с малыми лигандами. Эта функция, пожалуй, главная у белков. Она основана на способности полимера сворачиваться уникальным образом и формировать специфические трехмерные структуры. Функция узнавания является базой специфического катализа.

Каталитическая функция: специфический катализ химических реакций рибозимами. Данная функция аналогична энзиматической функции белков-ферментов.

В целом РНК предстает перед нами столь удивительным полимером, что, казалось бы, ни времени эволюции Вселенной, ни интеллекта Творца не должно было бы хватить на ее изобретение. Как можно было видеть, РНК способна выполнять функции обоих принципиально важных для жизни полимеров - ДНК и белков. Неудивительно, что перед наукой и встал вопрос: а не могло ли возникновение и самодостаточное существование мира РНК предшествовать появлению жизни в ее современной ДНК-белковой форме?

ПРОИСХОЖДЕНИЕ ЖИЗНИ

Белково-коацерватная теория Опарина. Пожалуй, первая научная, хорошо продуманная теория происхождения жизни абиогенным путем была предложена биохимиком А.И. Опариным еще в 20-х годах прошлого века [ , ]. Теория базировалась на представлении, что все начиналось с белков, и на возможности в определенных условиях спонтанного химического синтеза мономеров белков - аминокислот - и белковоподобных полимеров (полипептидов) абиогенным путем. Публикация теории стимулировала многочисленные эксперименты в ряде лабораторий мира, показавшие реальность такого синтеза в искусственных условиях. Теория быстро стала общепринятой и необыкновенно популярной.

Основным ее постулатом было то, что спонтанно возникавшие в первичном "бульоне" белковоподобные соединения объединялись" в коацерватные капли - обособленные коллоидные системы (золи), плавающие в более разбавленном водном растворе. Это давало главную предпосылку возникновения организмов - обособление некой биохимической системы от окружающей среды, ее компартментализацию. Так как некоторые белковоподобные соединения коацерватных капель могли обладать каталитической активностью, то появлялась возможность прохождения биохимических реакций синтеза внутри капель - возникало подобие ассимиляции, а значит, роста коацервата с последующим его распадом на части - размножением. Ассимилирующий, растущий и размножающийся делением коацерват рассматривался как прообраз живой клетки (рис. 5).

Все было хорошо продумано и научно обосновано в теории, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путем случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул (например, эффективные катализаторы, обеспечивающие преимущество данному коацервату в росте и размножении), то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам? Теория оказалась неспособной предложить решение проблемы точного воспроизведения - внутри коацервата и в поколениях - единичных, случайно появившихся эффективных белковых структур.

Мир РНК как предшественник современной жизни. Накопление знаний о генетическом коде, нуклеиновых кислотах и биосинтезе белков привело к утверждению принципиально новой идеи о ТОМ, что все начиналось вовсе не с белков, а с РНК [ - ]. Нуклеиновые кислоты являются единственным типом биологических полимеров, макромолекулярная структура которых, благодаря принципу комплементарности при синтезе новых цепей (подробнее см. ), обеспечивает возможность копирования собственной линейной последовательности мономерных звеньев, другими словами, возможность воспроизведения (репликации) полимера, его микроструктуры. Поэтому только нуклеиновые кислоты, но не белки, могут быть генетическим материалом, то есть воспроизводимыми молекулами, повторяющими свою специфическую микроструктуру в поколениях.

По ряду соображений именно РНК, а не ДНК, могла представлять собой первичный генетический материал.

Во-первых, и в химическом синтезе, и в биохимических реакциях рибонуклеотиды предшествуют дезоксирибонуклеотидам; дезоксирибонуклеотиды - продукты модификации рибонуклеотидов (см. рис. 2).

Во-вторых, в самых древних, универсальных процессах жизненного метаболизма широко представлены именно рибонуклеотиды, а не дезоксирибонуклеотиды, включая основные энергетические носители типа рибонуклеозид-полифосфатов (АТФ и т.п.).

В-третьих, репликация РНК может происходить без какого бы то ни было участия ДНК, а механизм редупликации ДНК даже в современном живом мире требует обязательного участия РНК-затравки в инициации синтеза цепи ДНК.

В-четвертых, обладая всеми теми же матричными и генетическими функциями, что и ДНК, РНК способна также к выполнению ряда функций, присущих белкам, включая катализ химических реакций. Таким образом, имеются все основания рассматривать ДНК как более позднее эволюционное приобретение - как модификацию РНК, специализированную для выполнения функции воспроизведения и хранения уникальных копий генов в составе клеточного генома без непосредственного участия в биосинтезе белков.

После того как были открыты каталитически активные РНК, идея первичности РНК в происхождении жизни получила сильнейший толчок к развитию, и была сформулирована концепция самодостаточного мира РНК, предшествовавшего современной жизни [ , ]. Возможная схема возникновения мира РНК представлена на рис. 6.

Абиогенный синтез рибонуклеотидов и их ковалентное объединение в олигомеры и полимеры типа РНК могли происходить приблизительно в тех же условиях и в той же химической обстановке, что постулировались для образования аминокислот и полипептидов. Недавно А.Б. Четверин с сотрудниками (Институт белка РАН) экспериментально показали, что по крайней мере некоторые полирибонуклеотиды (РНК) в обычной водной среде способны к спонтанной рекомбинации, то есть обмену отрезками цепи, путем транс-эстерификации . Обмен коротких отрезков цепи на длинные, должен приводить к удлинению полирибонуклеотидов (РНК), а сама подобная рекомбинация способствовать структурному многообразию этих молекул. Среди них могли возникать и каталитически активные молекулы РНК.

Даже крайне редкое появление единичных молекул РНК, которые были способны катализировать полимеризацию рибонуклеотидов или соединение (сплайсинг) олигонуклеотидов на комплементарной цепи как на матрице [ , ], означало становление механизма репликации РНК. Репликация самих РНК-катализаторов (рибозимов) должна была повлечь за собой возникновение самореплицирующихся популяций РНК. Продуцируя свои копии, РНК размножались. Неизбежные ошибки в копировании (мутации) и рекомбинации в самореплицирующихся популяциях РНК создавали все большее разнообразие этого мира. Таким образом, предполагаемый древний мир РНК - это "самодостаточный биологический мир, в котором молекулы РНК функционировали и как генетический материал, и как энзимоподобные катализаторы" .

Возникновение биосинтеза белка. Далее на основе мира РНК должно было происходить становление механизмов биосинтеза белка, появление разнообразных белков с наследуемой структурой и свойствами, компартментализация систем биосинтеза белка и белковых наборов, возможно, в форме коацерватов и эволюция последних в клеточные структуры - живые клетки (см. рис. 6).

Проблема перехода от древнего мира РНК к современному белок-синтезирующему миру - наиболее трудная даже для чисто теоретического решения. Возможность абиогенного синтеза по-липептидов и белковоподобных веществ не помогает в решении проблемы, так как не просматривается никакого конкретного пути, как этот синтез мог бы быть сопряжен с РНК и подпасть под генетический контроль. Генетически контролируемый синтез полипептидов и белков должен был развиваться независимо от первичного абиогенного синтеза, своим путем, на базе уже существовавшего мира РНК. В литературе предложено несколько гипотез происхождения современного механизма биосинтеза белка в мире РНК, но, пожалуй, ни одна из них не может рассматриваться как детально продуманная и безупречная с точки зрения физико-химических возможностей. Представлю свою версию процесса эволюции и специализации РНК, ведущего к возникновению аппарата биосинтеза белка (рис. 7), но и она не претендует на законченность.

Предлагаемая гипотетическая схема содержит два существенных момента, кажущихся принципиальными.

Во-первых, постулируется, что абиогенно синтезируемые олигорибонуклеотиды активно рекомбинировали посредством механизма спонтанной неэнзиматической трансэстерификации , приводя к образованию удлиненных цепей РНК и давая начало их многообразию. Именно этим путем в популяции олигонуклеотидов и полинуклеотидов и могли появиться как каталитически активные виды РНК (рибозимы), так и другие виды РНК со специализированными функциями (см. рис. 7). Более того, неэнзиматическая рекомбинация олигонуклеотидов, комплементарно связывающихся с полинуклеотидной матрицей, могла обеспечить сшивание (сплайсинг) фрагментов, комплементарных этой матрице, в единую цепь. Именно таким способом, а не катализируемой полимеризацией мононуклеотидов, могло осуществляться первичные копирование (размножение) РНК. Разумеется, если появлялись рибозимы, обладавшие полимеразной активностью , то эффективность (точность, скорость и продуктивность) копирования на комплементарной. матрице должна была значительно возрастать.

Второй принципиальный момент в моей версии состоит в том, что первичный аппарат биосинтеза белка возник на базе нескольких видов специализированных РНК до появления аппарата энзиматической (полимеразной) репликации генетического материала - РНК и ДНК. Этот первичный аппарат включал каталитически активную прорибосомную РНК, обладавшую пептидил-трансферазной активностью; набор про-тРНК, специфически связывающих аминокислоты или короткие пептиды; другую прорибосомную РНК, способную взаимодействовать одновременно с каталитической прорибосомной РНК, про-мРНК и про-тРНК (см. рис. 7). Такая система уже могла синтезировать полипептидные цепи за счет катализируемой ею реакции транспептидации. Среди прочих каталитически активных белков - первичных ферментов (энзимов) - появились и белки, катализирующие полимеризацию нуклеотидов - репликазы, или НК-полимеразы.

Впрочем, возможно, что гипотеза о древнем мире РНК как предшественнике современного живого мира так и не сможет получить достаточного обоснования для преодоления основной трудности - научно правдоподобного описания механизма перехода от РНК и ее репликации к биосинтезу белка. Имеется привлекательная и детально продуманная альтернативная гипотеза А.Д. Альтштейна (Институт биологии гена РАН), в которой постулируется, что репликация генетического материала и его трансляция - синтез белка - возникали и эволюционировали одновременно и сопряженно, начиная с взаимодействия абиогенно синтезирующихся олигонуклеотидов и аминоацил-нуклеотидилатов - смешанных ангидридов аминокислот и нуклеотидов . Но это уже следующая сказка… ("И Шахразаду застигло утро, и она прекратила дозволенные речи" .)

Литература

. Watson J.D., Crick F.H.C. Molecular structure of nucleic acids // Nature. 1953. V. 171. P. 738-740.

. Watson J.D., Crick F.H.C. Genetic implications of the structure of deoxyribose nucleic acid // Nature 1953 V. 171. P. 964-967.

. Спирин А.С. Современная биология и биологическая безопасность // Вестник РАН. 1997. № 7.

. Spirin A.S. On macromolecular structure of native high-polymer ribonucleic acid in solution // Journal of Molecular Biology. 1960. V. 2. P. 436-446.

. Kirn S.H., Suddath F.L., Quigley GJ. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA // Science. 1974. V. 185. P. 435-40.

. Robertas J.D., Ladner J.E., Finch J.T. et al. Structure of yeast phenylalanine tRNA at 3 A resolution // Nature. 1974. V. 250. P. 546-551.

. Vasiliev V.D., Serdyuk I.N., Gudkov A.T., SPIRin A.S. Self-organization of ribosomal RNA // Sturcture, Function and Genetics of Ribosomes / Eds. Hardesty B. and Kramer G. New York: Springer-Verlag, 1986. P. 129-142.

. Baserga SJ., Steitz J.A. The diverse world of small ribo-nucleoproteins // The RNA World / Eds. Gesteland R.F. and Atkins J.F. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993. P. 359-381.

. Kruger К., Grabowski PJ., Zaug AJ. et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena

. Bartel D.P., Szostak J.W. Isolation of new ribozymes from a large pool of random sequences // Science. 1993. V. 261. P. 1411-1418.

. Ekland E.H., Bartel D.P. RNA-catalysed RNA polymerization using nucleoside triphosphates // Nature. 1996 V. 382. P. 373-376.

. Orgel L.E. The origin of life - a review of facts and speculations //Trends in Biochemical Sciences. 1998. V. 23. p. 491-495.

. Альтштейн А.Д. Происхождение генетической системы: гипотеза прогенов // Молекулярная биология. 1987. Т. 21. С. 309-322.

Спирин Александр Сергеевич - академик, директор Института белка РАН, член Президиума РАН.

Тканевой обмен нуклеотидов

Продукты распада нуклеопротеидов и нуклеиновых кислот - нуклеотиды и нуклеозиды - претерпевают в органах п тканях различные превращения.

Нуклеотиды - как пуриновые, так и пиримидиновые - участвуют в синтезе нуклеиновых кислот в клеточных ядрах. Синтез ДНК осуществляется ферментами - ДНК-полимеразами, для которых субстратами служат дезоксирибонуклеозидтрифосфаты.

Синтез ДНК сопровождается освобождением молекул пирофосфата в количестве, соответствующем числу молекул нуклеозидтрифосфатов, вступивших в реакцию. ДНК (образец) и вновь синтезированный полинуклеотид образуют вместе двутяжную ДНК. Схема этого процесса может быть представлена в следующем виде:


Схема биосинтеза ДНК

Буква «d» перед символом нуклео-зидтрифосфата или мононуклеотидов в синтезированной молекуле ДНК обозначает, что в биосинтезе участвуют нуклеотиды, в к-рых пентоза представлена дезоксирибозой, т. е. дезоксирибонуклеотиды. Образование дезоксирибонуклеотидов происходит в результате сложного процесса восстановления рибонуклеотидов при действии нечувствительного к нагреванию белка - тиоредоксина.

Восстановленная форма тиоредоксина образуется под действием редуктазы (фермента флавопротешговой природы), коферментом к-рого служит восстановленный никотинамидадениндпнуклеотидфосфат (НАДФ) по схеме:

Образовавшаяся восстановленная форма тпоредоксина участвует в образовании дезоксинуклеотиддифосфатов (дНДФ) путем переноса редуцирующих эквивалентов на акцептирующие пх нуклеотиддифосфаты (НДФ):

Вновь образованная ДНК и служившая шаблоном ДНК могут на своих концах соединиться под влиянием фермента ДНК-лигазы и образовать циклическую структуру ДНК.


Рис. 6. Цикл трикарбоновых кислот (по Ленинжеру)

Синтез РНК осуществляется при участии полинуклеотидфосфорилазы - фермента, обусловливающего обратимую реакцию соединения нуклеозидднфосфатов в присутствии ионов магния и первоначальной РНК:


Схема биосинтеза РНК

Образованный полимер содержит 3′-5 ′-фосфодиэфирные связи, к-рые расщепляются рибонуклеазой. Реакция обратима и может быть направлена справа налево (в сторону распада полимера) при увеличении концентрации неорганического фосфата. Первоначальная РНК в данном случае не играет роли шаблона, по к-рому синтезируется полинуклеотид. Скорее всего свободная ОН-группа, находящаяся в концевом нуклеотиде РНК, необходима для присоединения к ней последующих нуклеотидов независимо от входящих в их состав оснований.

По-видимому, в интактной клетке полинуклеотидфосфорилазе принадлежит функция не образования полимера, а расщепления РНК. Что касается высокополимерной РНК с определенной последовательностью нуклеотидов, то образование ее осуществляется РНК-полимеразой, действие к-рой аналогично ферменту, синтезирующему ДНК. РНК-полимераза активна в присутствии ДНК-шаблона, осуществляет синтез РНК из нуклеозидтрифосфатов и собирает их в последовательности, предопределенной структурой ДНК:




Схема синтеза полимерной РНК

Loading...Loading...