Изменение цвета индикаторов в различных средах. Индикаторы химических реакций

Существуют различные методы определения концентрации (точнее активности) ионов водорода (и, соответственно, концентрации гидроксид-ионов). Один из простейших (колориметрический) основан на использовании кислотно-основных индикаторов. В качестве таких индикаторов могут служить многие органические кислоты и основания, которые изменяют свою окраску в некотором узком интервале значений рН.

Индикаторы представляют собой слабые кислоты или основания, которые в недиссоциированной и в диссоциированной (ионной) формах имеют разную окраску.

Пример.

1.Фенолфталеин представляет собой кислоту, которая в молекулярной форме (HJnd) при рН8,1 бесцветна. Анионы фенолфталеина (Jnd -) при рН9,6 имеют красно-фиолетовую окраску:

H Jnd  H + + Jnd -

Бесцветный  красно-фиолетовый

рН8,1 рН9,6

При уменьшении концентрации ионов Н + и увеличении концентрации ионовOH - молекулярная форма фенолфталеина переходит в анионную из-за отрыва от молекул иона водорода и связывания его с гидроксид-ионом в воду. Поэтому при рН9,6 раствор в присутствии фенолфталеина приобретает красно-фиолетовую окраску. Наоборот, в кислотных растворах при рН8,1 равновесие смещается в сторону молекулярной формы индикатора, не имеющей окраски.

2.Метиловый оранжевый представляет собой слабое основание JndOH, которое в молекулярной форме при рН 4,4 имеет желтый цвет. Катионы Jnd + при рН3,0 окрашивают раствор в красный цвет:

JndOH  Jnd + + OH -

желтый  красный

рН4,4 рН3,0

Кислотной формой индикатора называют форму, которая преобладает в кислотных растворах, а основной формой – ту, которая существует в основных (щелочных) растворах. В некотором промежутке значений рН в растворе может одновременно находиться в равновесии некоторое количество обеих форм индикатора, вследствие чего возникает переходная окраска индикатора, - это интервал рН перехода окраски индикатора, или просто интервал перехода индикатора.

В табл.1 показаны интервалы перехода некоторых часто используемых индикаторов.

Таблица 1

Кислотно-основные индикаторы

Индикатор

Значение рН

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Тимоловый синий

Метиловый оранжевый

желто-оранжевая

Бромфеноловый синий

Ализариновый красный

фиолетовая

Метиловый красный

Феноловый красный

Фенолфталеин

бесцветная

красная (розовая)

Ализариновый желтый

бледно-желтая

желто-коричн-евая

Индиго карминовый

11,6-14,0 14- желтая

Для быстрого определения рН удобно также пользоваться раствором универсального индикатора, представляющего собой смесь различных индикаторов и имеющего большой интервал перехода (значения рН от 1 до 10). На основе универсального индикатора промышленностью выпускаются специальные бумажные ленты для определения рН у растворов путем сравнения со специальной шкалой изменения их окраски под действием испытуемого раствора.

В колориметрическом методе для точного определения рН применяются стандартные буферные растворы, значение водородного показателя которых точно известно и постоянно.

Буферными растворами называются смеси слабых кислот или оснований с их солями. Такие смеси сохраняют определенное значение рН как при разбавлении, так и при прибавлении небольших количеств сильных кислот или щелочей.

РАСТИТЕЛЬНЫЕ ИНДИКАТОРЫ В ШКОЛЬНОЙ ЛАБОРАТОРИИ

Павлова Саргылана

Макарова Виктория

класс 9 «В», МБОУ «Вилюйская средняя общеобразовательная школа № 1 имени Г.И. Чиряева» г. Вилюйск Республики Саха (Якутия)

Петрова Анна Прокопьевна

научный руководитель, педагог высшей категории, преподаватель химии МБОУ «Вилюйская средняя общеобразовательная школа № 1 имени Г.И. Чиряева», г. Вилюйск

Индикаторы - это химические вещества, окраска которых меняется в зависимости от рН среды. Индикатор на латинском означает «указатель».

На уроках химии мы используем такие индикаторы, как лакмус, фенолфталеин, метиловый оранжевый, которые изменяют окраску в зависимости от среды раствора. Соки и отвары ярко окрашенных ягод, плодов и цветков также обладают свойствами кислотно-основных индикаторов, то есть меняют свою окраску при изменении кислотности среды.

Актуальность: использование кислотно-основных индикаторов из плодов растений, растущих в Якутии для определения реакции среды.

Цель работы : получение растительных индикаторов из природного сырья.

Задачи:

· изучить литературу, ознакомиться с методикой приготовления самодельных индикаторов из плодов растений, растущих в нашей местности;

· экспериментальным путем получить набор индикаторов.

· изучить поведение растительных индикаторов в различных средах.

· провести исследование по определению среды растворов моющих средств по уходу за волосами.

Объект исследования: природные растения, обладающие свойствами кислотно-основных индикаторов.

Гипотеза: растворы растительных индикаторов можно приготовить самостоятельно и применять в школьной лаборатории.

Методы и приемы работы:

· ознакомиться с методикой проведения опытов;

· приготовить растворы индикаторов из природного сырья;

· изучить изменения окраски природных индикаторов в зависимости от среды;

· соблюдать правила техники безопасности во время химического эксперимента.

2. Экспериментальная часть

2.1. Определение среды растворов искусственными индикаторами

Цель: н аблюдать изменение окраски растворов кислот, щелочи и среды растворов солейискусственно-синтезированными индикаторами.

Реактивы: раствор соляной кислоты HCl, раствор гидроксида калия КOH, раствор карбоната калия К 2 СО 3 , раствор хлорида натрия NaС1, раствор хлорида алюминия AlCl 3 .

В школьной химической лаборатории имеются следующие искусственные индикаторы: фенолфталеин, метиловый оранжевый и лакмус. Мы рассмотрели их на изменение цвета в нейтральной, кислой и щелочной средах.

Таблица 1.

Изменение окраски индикаторов в растворах

индикатор

Фенолфталеин

Бесцветная

Малиновая

Малиновая

Бесцветная

Бесцветная

Фиолетовая

Метиловый оранжевый

Оранжевая

Из таблицы 1 видно, что все индикаторы меняют свой цвет: в кислой среде на красный цвет (кроме фенолфталеина); в нейтральной имеют свой натуральный цвет, а в щелочной цвет сильно различается. Фенолфталеин меняет цвет раствора на малиновый, лакмус - на синий, а метиловый оранжевый - на жёлтый цвет.

2.2. Методика приготовления растительных индикаторов

Ход работы:

Для приготовления растительных индикаторов взяли по 25 г сырья, измельчили, залили 100 мл воды и прокипятили в течение 1-2 минут. Полученные отвары были охлаждены и профильтрованы. В полученный фильтрат, с целью предохранения от порчи, добавили спирт в соотношении 2:1. Приготовили индикаторы из ягод брусники, клюквы, малины, голубики, черники, клубники, плода свеклы.

2.3. Определение среды растворов растительными индикаторами.

Результаты исследования:

Для изучения изменения окраски природных индикаторов в различных средах брали пипеткой несколько капель растительного индикатора и поочередно добавляли их в растворы соляной кислоты, гидроксида калия, хлорида натрия, карбоната калия и хлорида алюминия. Результаты всех опытов даны в таблице.

Таблица 2.

Изменение окраски природных индикаторов в различных средах

Естествен-ный цвет индика-

Окраска в нейтральной среде

Окраска в щелочной среде (р-р KOH)

Окраска в щелочной среде (р-р K 2 CO 3)

Окраска в кислой среде

Окраска в кислой среде

Ягода брусники

ярко красный

не меняется

фиолетовый

Ягода малины

красно-малиновый

фиолетовый

Ягода клюквы

Ягода голубики

ярко-красный

фиолетовый

Ягода клубники

оранжево

оранжевый

оранжевый

оранжевый

Ягода черники

ярко-красный

фиолетовый

Плоды свеклы

не меняется

Из таблицы 2 видно, что все выбранные нами объекты изменяют свою естественную окраску в зависимости от кислотности среды. Очень хорошо это наблюдается у брусники, малины, голубики, клюквы, клубники, свеклы, ярко-красный отвар ягод и плодов которых в кислой среде становятся розовыми-красными-фиолетовыми, а в щелочной - жёлтыми- светлозелеными.

Вывод: ягоды растений имеют кислую среду, поэтому не изменяется цвет раствора в кислой среде, окраска остается красным. В щелочной среде растворы приобретают от желтого до зеленого цвета. Из плодов растений плоды свеклы являются хорошими индикаторами, получаются ярко выраженные окраски растворов.

2.4. Приготовление индикаторных бумажек.

С помощью фильтровальной бумаги и вытяжек из растительных индикаторов мы приготовили индикаторные бумажки. Способ приготовления очень простой: на фильтровальную бумагу с помощью пипетки наносят раствор из вытяжки растительного индикатора, высушивают и повторяют процедуру ещё раз.

Изменение цвета пропитанных индикаторных бумажек в различных средах соответствует изменению цвета вытяжки аналогичного растительного индикатора.

2.5. Определение среды растворов моющих средств.

Реактивы: растительные индикаторы, растворы шампуней: Absolut, Особая серия (пивной), Head and shoulders, Дегтярный, Clear vita abe.

Ход работы: каждое исследуемое моющее средство растворим в воде и разделим на пять частей. В них добавляем каплю природных индикаторов. В каждой из них индикаторы изменили окраску. (таблица 3).

Таблица 3.

Изменение окраски природных индикаторов в растворах моющих средств

Сырье для приготовления индикатора

Естествен-ный цвет индика-

Head and shoulders

Дегтярная

Особая серия (пивная)

Ягода брусники

ярко красный

Ягода малины

краснома-

Ягода клюквы

Ягода голубики

ярко-красный

светлосиний

Ягода клубники

оранжево

Ягода черники

ярко-красный

Плоды свеклы

оранжевый

оранжевый

оранжевый

Выводы по результатам исследования:

1. Все индикаторы: самодельные и заводская универсальная бумага, показали во всех испытуемых средствах соответствующий характер среды.

2. Кожа человека имеет слабокислотную среду. Для предохранения кожи и волос от негативного воздействия моющего средства должны иметь значение, соответствующее значению pН эпидермиса. Шампуни для волос имеют слабокислотную среду, что соответствует гигиеническим требованиям к данным средствам. По нашим исследованиям шампуней разных производств шампуни в основном соответствуют стандартным показателям, но шампунь «Clear vita abe» является дает более кислую среду, чем остальные шампуни. Второе место по кислотности занимает шампунь «Абсолют», третье место шампунь «Дегтярная».

Заключение:

Используя методику получения растительных индикаторов в школьной лаборатории, пришли к следующим выводам:

1. Лакмус, метиловый оранжевый и фенолфталеин - кислотно-основные индикаторы, которые чаще всего используются в школе. По изменению их окраски можно судить не только о реакции среды, но и достаточно точно определить рН раствора.

2. Растительные индикаторы обладают достаточно высокой чувствительностью, поэтому их можно использовать в качестве кислотно-основных индикаторов для определения среды растворов в школьной лаборатории на занятиях элективного курса, в химических кружках, также для определения кислотности почвы местности.

Приложение № 1

Рисунок 1. Для изучения изменения окраски природных индикаторов брали пипеткой несколько капель самодельного индикатора и поочередно добавляли их в растворы хлорида натрия, гидроксида калия, карбоната калия, соляной кислоты и хлорида алюминия

Рисунок 2. Набор приготовленных растительных индикаторов

Рисунок 3. Общий вид проведенных опытов

Рисунок 4. Готовые бумажные индикаторы

Рисунок 5. Изменение окраски бумажных индикаторов в различных средах

Список литературы:

1.Большой энциклопедический словарь - 2-е изд., перераб. и доп. - М.: «Большая Российская энциклопедия»; СПб.: «Норинт», 2001.

2.Ольгин О., Опыты без взрывов./ О. Ольгин. - М.: Химия, 1986.

3.Семенов П.П. «Индикаторы из местного растительного материала», «Химия в школе», 1984, № 1, стр. 73.

4.Степин С.С., Аликберова Л.Ю. Занимательные задания и эффектные опыты по химии, М.: «Дрофа», 2002.

ИНДИКАТОРЫ (позднелат. indicator - указатель), хим. в-ва, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации к.-л. компонента в р-ре. Указывают на определенное состояние системы или на момент достижения этого состояния. Различают индикаторы обратимые и необратимые. Изменение окраски первых при изменении состояния системы (напр., фенолфталеина при изменении рН среды) м. б. повторено многократно. Необратимые индикаторы подвергаются необратимым хим. превращениям, напр., азосоединения при окислении ионами BrO 3 - разрушаются. Индикаторы, к-рые вводят в исследуемый р-р, наз. внутренними, в отличие от внешних, р-цию с к-рыми проводят вне анализируемой смеси. В последнем случае одну или неск. капель анализируемого р-ра помещают на бумажку, пропитанную индикатором, или смешивают их на белой фарфоровой пластинке с каплей индикатора. И ндикаторы применяют чаще всего для установления конца к.-л. хим. р-ции, гл. обр. конечной точки титрования (к. т. т.). В соответствии с титриметрич. методами различают кислотно-основные, адсорбц., окислит.-восстановит. и комплексонометрич. индикаторы. представляют собой р-римые орг соед., к-рые меняют свой цвет или люминесценцию в зависимости от концентрации ионов Н + (рН среды). Примен. для установления конца р-ции между к-тами и основаниями (в т. ч. при кислотно-основном титровании) или др. р-ций, если в них участвуют ионы Н + , а также для колориметрич. определения рН водных р-ров. Наиб. важные кислотно-основные индикаторы приведены в табл. 1. Причина изменения цвета индикаторов в том, что присоединение или отдача протонов его молекулами связаны с заменой одних хромофорных групп другими или с появлением новых хромофорных групп. Если индикатор слабая к-та HIn, то в водном р-ре имеет место равновесие : HIn + Н 2 О D In - + Н 3 О + . Если индикатор - слабое основание In, то: In + H 2 O D HIn + + ОН - . В общем виде можно записать: In a + Н 2 О D In b + Н 3 О + , где In a и In b - соотв. кислая и основная формы индикатора, к-рые окрашены различно. Константа равновесия этого процесса К ln = / наз. константой индикатора. Цвет р-ра зависит от соотношения /, к-рое определяется рН р-ра.

Считают, что цвет одной формы индикатора заметен, если ее концентрация в 10 раз превышает концентрацию др. формы, т.е. если отношение / = /K ln равно 0,1 или 10. Изменение цвета индикатора отмечается в области рН = рК lп b 1, к-рый наз. интервалом перехода индикатора. Изменение наиб. отчетливо, когда = и К ln = [Н 3 О] + , т.е. при рН = рК ln . Значение рН, при к-ром обычно заканчивается титрование , наз. показателем титрования рТ. Индикаторы для титрования подбирают таким образом, чтобы интервал перехода окраски включал значение рН, какое должен иметь р-р в точке эквивалентности. Часто это значение рН не совпадает с рТ используемого индикатора, что приводит к т. наз. индикаторной ошибке. Если в к. т. т. остается избыток неоттитрованного слабого основания или к-ты, ошибка наз. соотв. основной или кислотной. Чувствительность индикатора - концентрация (в моль /л) определяемого иона (в данном случае Н + или ОН - ) в точке наиб. резкого перехода окраски. Различают: чувствительные к к-там индикаторы с интервалом перехода в области щелочных значений рН (напр., фенолфталеин , тимолфталеин); чувствительные к основаниям индикаторы с интервалом перехода в кислой области (как у диметилового желтого, метилового оранжевого и др.); нейтральные индикаторы, интервал перехода к-рых находится ок. рН 7 (нейтральный красный, феноловый красный и др.). И ндикаторы бывают с одной или двумя окрашенными формами; такие индикаторы наз. соотв. одноцветными и двухцветными. Наиб. четкое изменение окраски наблюдалось бы у тех индикаторов, кислотная и основная формы к-рых окрашены в дополнит. цвета. Однако таких индикаторов не существует. Поэтому, добавляя краситель , изменяют соответствующим образом окраски обеих форм. Так, у метилового красного переход от красного к желтому происходит в интервале 2 единиц рН, а если к р-ру добавить метиленовый синий , то переход окраски от красно-фиолетовой к зеленой наблюдается резко и отчетливо при рН 5,3. Подобного эффекта можно добиться, если использовать смесь двух индикаторов, цвета к-рых дополняют дру. друга. Такие индикаторы наз. смешанными (табл. 2).


Смеси индикаторов, к-рые непрерывно изменяют свой цвет во всей области значений рН от 1 до 14, наз. универсальными. Их используют для приблизит. оценки рН р-ров. На изменение окраски индикатора оказывают влияние его концентрации . Для двухцветных индикаторов чем выше концентрация , тем изменение окраски менее резко, т.к. спектры поглощения обеих форм накладываются друг на друга в большей степени и становится труднее определить изменение окраски. Обычно используют одно и то же минимальное (неск. капель р-ра) кол-во индикатора. Интервал перехода многих индикаторов зависит от т-ры. Так, метиловый оранжевый меняет свою окраску при комнатной т-ре в интервале рН 3,4-4,4, а при 100 °С в интервале рН 2,5-3,3. Это связано с изменением ионного произведения воды . Присутствующие в р-ре коллоидные частицы адсорбируют индикаторы, что приводит к полному изменению его цвета. Для исключения ошибки в присут. положительно заряженных коллоидных частиц следует применять индикаторы-основания, а в присут. отрицательно заряженных - индикаторы-кислоты. При титровании в обычных условиях необходимо учитывать влияние растворенного СО 2 , особенно при использовании индикаторов с рК ln > 4 (напр., метилового оранжевого , метилового красного, фенолфталеина). Иногда СО 2 предварительно удаляют кипячением или титруют р-р в отсутствие контакта с атмосферой . Влияние посторонних нейтральных электролитов (солевой эффект) проявляется в смещении равновесия индикаторов. В случае индикаторов-кислот интервал перехода смещается в более кислую область, а в случае индикаторов-оснований - в более щелочную. В зависимости от природы р-рителя меняются окраски индикаторов, их рК ln и чувствительность. Так, метиловый красный в воде дает переход окраски при более высоких значениях активности ионов Н + , чем бромфеноловый синий, а в этиленгликолевом р-ре наоборот. В водно-метанольных и водно-этанольных р-рах изменение по сравнению с водной средой незначительно. В спиртовой среде индикаторы-кислоты более чувствительны к ионам Н + , чем индикаторы-основания. Хотя при титровании в неврдных средах обычно к. т. т. устанавливают потенциометрически с помощью стеклянного индикаторного электрода , используют также кислотно-основные индикаторы (табл. 3). Чаще всего для титрования слабых оснований применяют метиловый красный в диоксане или кристаллический фиолетовый в безводной СН 3 СООН; при титровании слабых к-т - тимоловый синий в ДМФА. Поведение индикаторов в неводной и водной средах аналогично. Напр., для слабой к-ты HIn в р-рителе SН можно записать равновесие : HIn + SH D In - + SH 2 + . Механизм действия индикаторов такой же, как и в воде , только в неводных средах пользуются соответствующими шкалами кислотности (рН р, рА; см. Кислотно-основное титрование). В качестве кислотно-основных индикаторов используют также люминесцентные индикаторы , меняющие цвет и интенсивность флуоресценции в зависимости от рН и позволяющие титровать сильно окрашенные и мутные р-ры.

Для титрования слабых к-т применяются т наз. индикаторы помутнения в-ва, образующие обратимые коллоидные системы , коагулирующие в очень узком интервале рН (напр., изонитроацетил-n-аминобензол дает муть при рН 10,7-11,0). В качестве кислотно-основных индикаторов можно использовать комплексы металлов с металлохромными индикаторами (см. ниже); эти комплексы, разрушаясь, изменяют окраску р-ра в узком интервале рН. Для определения орг. к-т и оснований в воде в присут. несмешивающегося с ней р-рителя применяют т. наз. амфииндикаторы, к-рые представляют собой соли индикаторов-кислот (напр., тропеолина 00) с разл. орг. основаниями (напр., алкалоидами). Эти индикаторы хорошо раств. в орг. р-рителях, плохо в воде ; отличаются высокой чувствительностью. Адсорбционные индикаторы в-ва, способные адсорбироваться на пов-сти осадка и менять при этом окраску или интенсивность люминесценции Эти индикаторы, как правило, обратимы и используются в осадительном титровании В первую очередь осадком адсорбируются ионы , идентичные тем, к-рые входят в состав самого осадка, после чего адсорбируется индикатор. Большая группа индикаторов красители (табл. 4), адсорбирующиеся пов-стью осадка с образованием солей с ионами , содержащимися в осадке.


Напр., р-р эозина розового цвета, к-рый не меняется при добавлении AgNO 3 . Но при титровании р-ром КВr выпадающий осадок адсорбирует ионы Ag + , к-рые присоединяют к себе анионы эозина . Осадок при этом становится красно-фиолетовым. В к. т. т., когда оттитрованы все ионы Ag + , окраска осадка исчезает и р-р становится снова розовым. Неорг. адсорбц. индикаторы образуют с ионами титранта цветной осадок или комплекс (как, напр., применяемые в качестве индикаторов ионы СrО 4 - и SCN - в аргентометрии). В качестве адсорбц. индикаторов применяются также нек-рые кислотно-основные, окислит.-восстановит. и комплексонометрич. индикаторы, св-ва к-рых (константы кислотной диссоциации , окислит.-восстановит. потенциалы и константы устойчивости комплексов с катионами металлов) в адсорбир. состоянии зависят от природы и концентрации ионов на пов-сти осадка. Окислит.-восстановит. индикаторы - в-ва, способные изменять окраску в зависимости от окислит.-восстановит. потенциала р-ра. Применяют для установления к. т. т. окислит.-восстановит. титрования и для колориметрич. определения окислит.-восстановит. потенциала (преим. в биологии). Такими индикаторами служат, как правило, в-ва, к-рые сами подвергаются окислению или восстановлению , причем окисленная (In Oх) и восстановленная (In Red) формы имеют разные окраски. Для обратимых окислит.-восстановит. индикаторов можно записать: In Oх + ne D In Red , где п - число электронов . При потенциале Е отношение концентраций обеих форм индикатора определяется Нернста уравнением :
,
где E ln - реальный окислит.-восстановит. потенциал индикатора, зависящий от состава р-ра. Интервал перехода окраски практически наблюдается при изменении отношения / от 0,1 до 10, что при 25 °С соответствует
D E (в В) = E ln b (0,059/n). Потенциал, соответствующий самому резкому изменению цвета, равен E ln . При выборе индикатора учитывают гл. обр. значения E ln , коэф. молярного погашения обеих форм индикатора и потенциал р-ра в точке эквивалентности. При титровании сильными окислителями (К 2 Сr 2 О 7 , КМnО 4 и др.) применяют индикаторы, имеющие сравнительно высокие E ln , напр., дифениламин и его производные; при титровании сильными восстановителями [солями Ti(III), V(II) и т.д.] применяют индикаторы с относительно низкими E ln , напр., сафранин , метиленовый голубой (табл. 5).


Нек-рые в-ва изменяют свою окраску необратимо, напр., при окислении разрушаются с образованием бесцв. продуктов, как индиго под действием гипохлоритов или нафтоловый сине-черный под действием ионов ВrО 3 . Комплексонометрические индикаторы - в-ва, образующие с ионами металлов (М) окрашенные комплексы, по цвету отличающиеся от самих индикаторов Применяются для установления к. т. т. в комплексонометрии . Устойчивость комплексов металлов с индикаторами (In) меньше, чем соответствующих комплексoнатов, поэтому в к. т. т. комплексоны вытесняют индикаторы из комплексов с металлами . В момент изменения окраски в точке эквивалентности = и, следовательно, рМ = - lg K Mln , где рМ = - lg[M] наз. точкой перехода индикатора, К Mln - константа устойчивости комплекса металла с индикатором. Ошибка при титровании связана с тем, что нек-рое кол-во

В кислой среде раствора рН < 7, в нейтральной среде рН = 7, в щелочной рН > 7. Чем меньше рН, тем больше кислотность раствора. При значениях рН > 7 говорят о щелочности раствора.

Существуют различные методы определения рН раствора. Качественно характер среды раствора определяют с помощью индикаторов. Индикаторы – вещества, которые обратимо изменяют свой цвет в зависимости от среды раствора. На практике чаще всего применяют лакмус, метиловый оранжевый, фенолфталеин и универсальный индикатор (табл. 2).

Таблица 2

Окраска индикаторов в различных средах растворов

Водородный показатель имеет очень важное значение для медицины, его отклонение от нормальных величин даже на 0,01 единицы свидетельствует о патологических процессах в организме. При нормальной кислотности желудочный сок имеет рН = 1,7; кровь человека имеет рН = 7,4; слюна – рН = 6,9.

Реакции ионного обмена и условия их протекания

Поскольку молекулы электролитов в растворах распадаются на ионы, то и реакции в растворах электролитов протекают между ионами. Реакции ионного обмена – это реакции между ионами, образовавшимися в результате диссоциации электролитов. Сущность таких реакций заключается в связывании ионов путем образования слабого электролита. Другими словами, реакция ионного обмена имеет смысл и протекает практически до конца, если в результате нее образуются слабые электролиты (осадок, газ, Н 2 О и др.). Если в растворе нет ионов, которые могут связываться между собой с образованием слабого электролита, то реакция обратима; уравнения таких реакций обмена не пишут.

При записи реакций ионного обмена используют молекулярную, полную ионную и сокращенную ионную формы. Пример записи реакции ионного обмена в трех формах:

K 2 SO 4 + BaCl 2 = BaSO 4 + 2KCl,

2K + + SO 4 2– + Ba 2+ + 2Cl – = BaSO 4 + 2K + + 2Cl – ,

Ba 2+ + SO 4 2– = BaSO 4 .

Правила составления уравнений ионных реакций

1. Формулы слабых электролитов записывают в молекулярном виде, сильных – в ионном.

2. Для реакции берут растворы веществ, поэтому даже малорастворимые вещества в случае реагентов записывают в виде ионов.

3. Если малорастворимое вещество образуется в результате реакции, то при записи ионного уравнения его считают нерастворимым.

4. Сумма зарядов ионов в левой части уравнения должна быть равна сумме зарядов ионов в правой части.

Тест по теме «Теория электролитической диссоциации. Реакции ионного обмена»

1. Реакция, которая происходит при растворении гидроксида магния в серной кислоте, описывается сокращенным ионным уравнением:

а) Mg 2+ + SO 4 2– = MgSO 4 ;

б) H + + OH – = H 2 O;

в) Mg(OH) 2 + 2H + = Mg 2+ + 2H 2 O;

г) Mg(OH) 2 + SO 4 2– = MgSO 4 + 2OH – .

2. В четырех сосудах содержится по одному литру 1М растворов перечисленных ниже веществ. В каком растворе содержится больше всего ионов?

а) Сульфат калия; б) гидроксид калия;

в) фосфорная кислота; г) этиловый спирт.

3. Степень диссоциации не зависит от:

а) объема раствора; б) природы электролита;

в) растворителя; г) концентрации.

4. Сокращенное ионное уравнение

Al 3+ + 3OH – = Al(OH) 3

соответствует взаимодействию:

а) хлорида алюминия с водой;

б) хлорида алюминия с гидроксидом калия;

в) алюминия с водой;

г) алюминия с гидроксидом калия.

5. Электролит, который не диссоциирует ступенчато, – это:

а) гидроксид магния; б) фосфорная кислота;

в) гидроксид калия; г) сульфат натрия.

6. Слабым электролитом является:

а) гидроксид бария;

б) гидроксид алюминия;

в) плавиковая кислота;

г) йодоводородная кислота.

7. Сумма коэффициентов в кратком ионном уравнении взаимодействия баритовой воды и углекислого газа равна:

а) 6; б) 4; в) 7; г) 8.

8. В растворе не могут находиться следующие пары веществ:

а) хлорид меди и гидроксид натрия;

б) хлорид калия и гидроксид натрия;

в) соляная кислота и гидроксид натрия;

г) серная кислота и хлорид бария.

9. Вещество, добавление которого к воде не изменит ее электропроводности, – это:

а) уксусная кислота; б) хлорид серебра;

в) серная кислота; г) хлорид калия.

10. Как будет выглядеть график зависимости накала электрической лампочки, включенной в цепь, от времени, если электроды погружены в раствор известковой воды, через который длительное время пропускают углекислый газ?

а) Линейное возрастание;

б) линейное убывание;

в) сначала убывание, затем возрастание;

г) сначала возрастание, затем убывание.

ИНДИКАТОРЫ (от лат. indicator – указатель) – вещества, позволяющие следить за составом среды или за протеканием химической реакции. Одни из самых распространенных – кислотно-основные индикаторы, которые изменяют цвет в зависимости от кислотности раствора. Происходит это потому, что в кислой и щелочной среде молекулы индикатора имеют разное строение. Примером может служить распространенный индикатор фенолфталеин, который раньше использовали также в качестве слабительного средства под названием пурген. В кислой среде это соединение находится в виде недиссоциированных молекул, и раствор бесцветен, а в щелочной – в виде однозарядных анионов, и раствор имеет малиновый цвет (см . ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ). Однако в сильнощелочной среде фенолфталеин снова обесцвечивается! Происходит это из-за образования еще одной бесцветной формы индикатора – в виде трехзарядного аниона. Наконец, в среде концентрированной серной кислоты снова появляется красная окраска, хотя и не такая интенсивная. Ее виновник – катион фенолфталеина. Этот малоизвестный факт может привести к ошибке при определении реакции среды.

Кислотно-щелочные индикаторы весьма разнообразны; многие из них легко доступны и потому известны не одно столетие. Это отвары или экстракты окрашенных цветов, ягод и плодов. Так, отвар ириса, анютиных глазок, тюльпанов , черники, ежевики, малины, черной смородины, красной капусты, свеклы и других растений становится красным в кислой среде и зелено-голубым – в щелочной. Это легко заметить, если помыть кастрюлю с остатками борща мыльной (т.е. щелочной) водой. С помощью кислого раствора (уксус) и щелочного (питьевая, а лучше – стиральная сода) можно также сделать надписи на лепестках различных цветов красного или синего цвета.

Обычный чай – тоже индикатор. Если в стакан с крепким чаем капнуть лимонный сок или растворить несколько кристалликов лимонной кислоты, то чай сразу станет светлее. Если же растворить в чае питьевую соду, раствор потемнеет (пить такой чай, конечно, не следует). Чай же из цветков («каркаде») дает намного более яркие цвета.

Вероятно, самый старый кислотно-основной индикатор – лакмус. Еще в 1640 ботаники описали гелиотроп (Heliotropium Turnesole) – душистое растение с темно-лиловыми цветками, из которого было выделено красящее вещество. Этот краситель, наряду с соком фиалок, стал широко применяться химиками в качестве индикатора, который в кислой среде был красным, а в щелочной – синим. Об этом можно прочитать в трудах знаменитого физика и химика XVII века Роберта Бойля. Вначале с помощью нового индикатора исследовали минеральные воды, а примерно с 1670 года его начали использовать в химических опытах. «Как только вношу незначительно малое количество кислоты, – писал в 1694 французский химик Пьер Поме о „турнесоле", – он становится красным, поэтому если кто хочет узнать, содержится ли в чем-нибудь кислота, его можно использовать». В 1704 немецкий ученый М.Валентин назвал эту краску лакмусом; это слово и осталось во всех европейских языках, кроме французского; по-французски лакмус – tournesol, что дословно означает «поворачивающийся за солнцем». Так же французы называют и подсолнечник; кстати, «гелиотроп» означает то же самое, только по-гречески. Вскоре оказалось, что лакмус можно добывать и из более дешевого сырья, например, из некоторых видов лишайников.

К сожалению, почти у всех природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся – скисают или плесневеют (более устойчивы спиртовые растворы). Другой недостаток – слишком широкий интервал изменения цвета. При этом трудно или невозможно отличить, например, нейтральную среду от слабокислой или слабощелочную от сильнощелочной. Поэтому в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах рН. Таких индикаторов известно множество, и каждый из них имеет свою область применения. Например, метиловый фиолетовый изменяет окраску от желтой до зеленой в интервале рН 0,13 – 0,5; метиловый оранжевый – от красной (рН < 3,1) до оранжево-желтой (рН 4); бромтимоловый синий – от желтой (рН < 6,0) до сине-фиолетовой (рН 7,0); фенолфталеин – от бесцветной (рН < 8,2) до малиновой (рН 10); тринитробензол – от бесцветной (pH < 12,2) до оранжевой (рН 14,0).

В лабораториях нередко используются универсальные индикаторы – смесь нескольких индивидуальных индикаторов, подобранных так, что их раствор поочередно меняет окраску, проходя все цвета радуги при изменении кислотности раствора в широком диапазоне рН (например, от 1 до 11). Раствором универсального индикатора часто пропитывают полоски бумаги, которые позволяют быстро (хотя и с не очень высокой точностью) определить рН анализируемого раствора, сравнивая окраску полоски, смоченной раствором, с эталонной цветовой шкалой.

Помимо кислотно-основных, применяют и другие типы индикаторов. Так, окислительно-восстановительные индикаторы изменяют свой цвет в зависимости от того, присутствует в растворе окислитель или восстановитель. Например, окисленная форма дифениламина фиолетовая, а восстановленная – бесцветная. Некоторые окислители сами могут служить индикатором. Например, при анализе соединений железа(II) в ходе реакции

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 ? 5Fe 2 (SO 4) 3 + 2MnSO 4 + K 2 SO 4 + 8H 2 O

добавляемый раствор перманганата обесцвечивается, пока в растворе присутствуют ионы Fe 2+ . Как только появится малейший избыток перманганата, раствор приобретает розовую окраску. По количеству израсходованного перманганата легко рассчитать содержание железа в растворе. Аналогично в многочисленных анализах с использованием метода иодометрии индикатором служит сам иод; для повышения чувствительности анализа используют крахмал, который позволяет обнаруживать малейший избыток иода.

Широкое распространение получили комплесонометрические индикаторы – вещества, образующие с ионами металлов (многие из которых бесцветны) окрашенные комплексные соединения. Примером может служить эриохром черный Т; раствор этого сложного органического соединения имеет синий цвет, а в присутствии ионов магния, кальция и некоторых других образуются комплексы, окрашенные в интенсивный винно-красный цвет. Анализ ведут так: к раствору, содержащему анализируемые катионы и индикатор, добавляют по каплям более сильный, по сравнению с индикатором, комплексообразователь, чаще всего – трилон Б. Как только трилон полностью свяжет все катионы металлов, произойдет отчетливый переход от красного цвета к синему. По количеству добавленного трилона легко вычислить содержание катионов металла в растворе.

Известны и другие виды индикаторов. Например, некоторые вещества адсорбируются на поверхности осадка, изменяя его окраску; такие индикаторы называются адсорбционными. При титровании мутных или окрашенных растворов, в которых практически невозможно заметить изменение окраски обычных кислотно-основных индикаторов, используют флуоресцентные индикаторы. Они светятся (флуоресцируют) разным цветом в зависимости от рН раствора. Например, флуоресценция акридина изменяется от зеленой при рН = 4,5 до синей при рН = 5,5; при этом важно, что свечение индикатора не зависит от прозрачности и собственной окраски раствора.

Илья Леенсон

Loading...Loading...